Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078183835> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2078183835 endingPage "1150" @default.
- W2078183835 startingPage "1121" @default.
- W2078183835 abstract "We study the isomorphism problem for the multiplier algebras of irreducible complete Pick kernels. These are precisely the restrictions <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M Subscript upper V> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:mi>V</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>mathcal {M}_V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the multiplier algebra <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal {M}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of Drury-Arveson space to a holomorphic subvariety <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper V> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=application/x-tex>V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the unit ball <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper B Subscript d> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>B</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>mathbb {B}_d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We find that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M Subscript upper V> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:mi>V</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>mathcal {M}_V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is completely isometrically isomorphic to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M Subscript upper W> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:mi>W</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>mathcal {M}_W</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper W> <mml:semantics> <mml:mi>W</mml:mi> <mml:annotation encoding=application/x-tex>W</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the image of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper V> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=application/x-tex>V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> under a biholomorphic automorphism of the ball. In this case, the isomorphism is unitarily implemented. This is then strengthened to show that when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d greater-than normal infinity> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>d>infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> every isometric isomorphism is completely isometric. The problem of characterizing when two such algebras are (algebraically) isomorphic is also studied. When <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper V> <mml:semantics> <mml:mi>V</mml:mi> <mml:annotation encoding=application/x-tex>V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper W> <mml:semantics> <mml:mi>W</mml:mi> <mml:annotation encoding=application/x-tex>W</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are each a finite union of irreducible varieties and a discrete variety, when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=d greater-than normal infinity> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>d>infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, an isomorphism between <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M Subscript upper V> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:mi>V</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>mathcal {M}_V</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M Subscript upper W> <mml:semantics> <mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> <mml:mi>W</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>mathcal {M}_W</mml:annotation> </mml:semantics> </mml:math> </inline-formula> determines a biholomorphism (with multiplier coordinates) between the varieties; and the isomorphism is composition with this function. These maps are automatically weak-<inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=asterisk> <mml:semantics> <mml:mo>∗<!-- ∗ --></mml:mo> <mml:annotation encoding=application/x-tex>*</mml:annotation> </mml:semantics> </mml:math> </inline-formula> continuous. We present a number of examples showing that the converse fails in several ways. We discuss several special cases in which the converse does hold—particularly, smooth curves and Blaschke sequences. We also discuss the norm closed algebras associated to a variety, and point out some of the differences." @default.
- W2078183835 created "2016-06-24" @default.
- W2078183835 creator A5028093822 @default.
- W2078183835 creator A5066331894 @default.
- W2078183835 creator A5085929632 @default.
- W2078183835 date "2014-07-17" @default.
- W2078183835 modified "2023-10-17" @default.
- W2078183835 title "Operator algebras for analytic varieties" @default.
- W2078183835 cites W1515824082 @default.
- W2078183835 cites W1964792585 @default.
- W2078183835 cites W1966983903 @default.
- W2078183835 cites W1967344415 @default.
- W2078183835 cites W2007248949 @default.
- W2078183835 cites W2007655005 @default.
- W2078183835 cites W2010882186 @default.
- W2078183835 cites W2015499339 @default.
- W2078183835 cites W2016666403 @default.
- W2078183835 cites W2036209426 @default.
- W2078183835 cites W2059783448 @default.
- W2078183835 cites W2062601049 @default.
- W2078183835 cites W2067327225 @default.
- W2078183835 cites W2086191654 @default.
- W2078183835 cites W2088225413 @default.
- W2078183835 cites W212161842 @default.
- W2078183835 cites W2131336344 @default.
- W2078183835 cites W2171334551 @default.
- W2078183835 cites W2596991543 @default.
- W2078183835 cites W2963189441 @default.
- W2078183835 cites W2963392219 @default.
- W2078183835 cites W3100938732 @default.
- W2078183835 cites W4244022977 @default.
- W2078183835 doi "https://doi.org/10.1090/s0002-9947-2014-05888-1" @default.
- W2078183835 hasPublicationYear "2014" @default.
- W2078183835 type Work @default.
- W2078183835 sameAs 2078183835 @default.
- W2078183835 citedByCount "51" @default.
- W2078183835 countsByYear W20781838352012 @default.
- W2078183835 countsByYear W20781838352013 @default.
- W2078183835 countsByYear W20781838352014 @default.
- W2078183835 countsByYear W20781838352015 @default.
- W2078183835 countsByYear W20781838352016 @default.
- W2078183835 countsByYear W20781838352017 @default.
- W2078183835 countsByYear W20781838352018 @default.
- W2078183835 countsByYear W20781838352019 @default.
- W2078183835 countsByYear W20781838352020 @default.
- W2078183835 countsByYear W20781838352021 @default.
- W2078183835 countsByYear W20781838352022 @default.
- W2078183835 countsByYear W20781838352023 @default.
- W2078183835 crossrefType "journal-article" @default.
- W2078183835 hasAuthorship W2078183835A5028093822 @default.
- W2078183835 hasAuthorship W2078183835A5066331894 @default.
- W2078183835 hasAuthorship W2078183835A5085929632 @default.
- W2078183835 hasBestOaLocation W20781838351 @default.
- W2078183835 hasConcept C11413529 @default.
- W2078183835 hasConcept C127313418 @default.
- W2078183835 hasConcept C151730666 @default.
- W2078183835 hasConcept C154945302 @default.
- W2078183835 hasConcept C2776321320 @default.
- W2078183835 hasConcept C2777299769 @default.
- W2078183835 hasConcept C33923547 @default.
- W2078183835 hasConcept C41008148 @default.
- W2078183835 hasConceptScore W2078183835C11413529 @default.
- W2078183835 hasConceptScore W2078183835C127313418 @default.
- W2078183835 hasConceptScore W2078183835C151730666 @default.
- W2078183835 hasConceptScore W2078183835C154945302 @default.
- W2078183835 hasConceptScore W2078183835C2776321320 @default.
- W2078183835 hasConceptScore W2078183835C2777299769 @default.
- W2078183835 hasConceptScore W2078183835C33923547 @default.
- W2078183835 hasConceptScore W2078183835C41008148 @default.
- W2078183835 hasIssue "2" @default.
- W2078183835 hasLocation W20781838351 @default.
- W2078183835 hasLocation W20781838352 @default.
- W2078183835 hasLocation W20781838353 @default.
- W2078183835 hasOpenAccess W2078183835 @default.
- W2078183835 hasPrimaryLocation W20781838351 @default.
- W2078183835 hasRelatedWork W151193258 @default.
- W2078183835 hasRelatedWork W1529400504 @default.
- W2078183835 hasRelatedWork W1607472309 @default.
- W2078183835 hasRelatedWork W1871911958 @default.
- W2078183835 hasRelatedWork W1892467659 @default.
- W2078183835 hasRelatedWork W2123357356 @default.
- W2078183835 hasRelatedWork W2349865494 @default.
- W2078183835 hasRelatedWork W2808586768 @default.
- W2078183835 hasRelatedWork W2998403542 @default.
- W2078183835 hasRelatedWork W3101673024 @default.
- W2078183835 hasVolume "367" @default.
- W2078183835 isParatext "false" @default.
- W2078183835 isRetracted "false" @default.
- W2078183835 magId "2078183835" @default.
- W2078183835 workType "article" @default.