Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078236731> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2078236731 endingPage "1044" @default.
- W2078236731 startingPage "1018" @default.
- W2078236731 abstract "We generalize results of Gilman and Fox to unperturbed toroidal fields that have a node somewhere between the equator and the pole as we speculate the Sun's field to have for most phases of its magnetic cycle. We use the same solution method as in Gilman and Fox, namely Legendre polynomial expansion and matrix inversion to solve for the eigenvalues and eigenfunctions. The solutions are structured around certain singular or critical points of the suitably transformed and combined vorticity and induction equations. There are singular points at the poles, and singularities where ω0-cr=±α0, in which ω0 is the local rotation rate, cr is the longitudinal phase speed of an unstable wave, and α0 is an angular measure of the toroidal field. We survey the instability as a function of toroidal field profile and amplitude as well as differential rotation amplitude, thereby examining reference states that could be characteristic of most phases of the solar cycle, and most depths within the rotational shear layer just below the base of the solar convection zone. As found in Gilman and Fox, instability occurs for a wide range of both toroidal fields and differential rotations. Differential rotation is again the primary energy source for growing modes when the toroidal field is weak, and the toroidal field is the primary source when it is strong. Unlike in Gilman and Fox, here modes of both symmetries about the equator are unstable for low and high toroidal fields, and for high fields a second antisymmetric mode appears. Which mode symmetry is favored for low fields depends in detail on the relative amplitudes of differential rotation and toroidal field. For low toroidal fields (unstable) modes of both symmetries are energetically active (extracting energy from the unperturbed state) only poleward of the node and an adjacent singularity, but are coupled to energetically neutral velocity perturbations equatorward of that singular point. In transition to higher field strengths, those velocity patterns are damped out when two additional singular points appear in the system, but the energetically active high-latitude disturbances remain. By contrast the second antisymmetric mode is energetically active equatorward of the toroidal field node and closely adjacent singular points, but is coupled to an energetically neutral pattern of both velocities and magnetic fields on the poleward side. As in Gilman and Fox, we find narrow-latitude bands of sharp changes in both differential rotation and toroidal magnetic field that migrate toward the equator with increasing field strength, but are bounded in their migration by the latitude of the toroidal field node. These sharp changes are always at the locations of the singular points of the system and represent narrow domains where both kinetic and magnetic energy are being extracted from the reference state to drive the instability. We interpret the instability as a form of resonant overreflection between singular points, analogous to what happens in stratified shear flow, as described for example by Lindzen. The instability may contribute to determining the latitudinal and longitudinal distribution of active regions and other large-scale, magnetic features on the Sun, as well as enable a degree of synchronization of the evolution of the solar cycle between low latitudes and high, and between north and south hemispheres." @default.
- W2078236731 created "2016-06-24" @default.
- W2078236731 creator A5024379437 @default.
- W2078236731 creator A5071188837 @default.
- W2078236731 date "1999-01-10" @default.
- W2078236731 modified "2023-09-27" @default.
- W2078236731 title "Joint Instability of Latitudinal Differential Rotation and Toroidal Magnetic Fields below the Solar Convection Zone. II. Instability for Toroidal Fields that Have a Node between the Equator and Pole" @default.
- W2078236731 cites W1965872118 @default.
- W2078236731 cites W1990386756 @default.
- W2078236731 cites W2069958513 @default.
- W2078236731 cites W2076727324 @default.
- W2078236731 cites W2081394623 @default.
- W2078236731 cites W2086064755 @default.
- W2078236731 cites W2103271849 @default.
- W2078236731 cites W2119712552 @default.
- W2078236731 cites W2140230289 @default.
- W2078236731 cites W4238387317 @default.
- W2078236731 doi "https://doi.org/10.1086/306609" @default.
- W2078236731 hasPublicationYear "1999" @default.
- W2078236731 type Work @default.
- W2078236731 sameAs 2078236731 @default.
- W2078236731 citedByCount "31" @default.
- W2078236731 countsByYear W20782367312022 @default.
- W2078236731 countsByYear W20782367312023 @default.
- W2078236731 crossrefType "journal-article" @default.
- W2078236731 hasAuthorship W2078236731A5024379437 @default.
- W2078236731 hasAuthorship W2078236731A5071188837 @default.
- W2078236731 hasConcept C10899652 @default.
- W2078236731 hasConcept C115260700 @default.
- W2078236731 hasConcept C121332964 @default.
- W2078236731 hasConcept C122523270 @default.
- W2078236731 hasConcept C1276947 @default.
- W2078236731 hasConcept C12980444 @default.
- W2078236731 hasConcept C133879193 @default.
- W2078236731 hasConcept C139653429 @default.
- W2078236731 hasConcept C15001198 @default.
- W2078236731 hasConcept C155008239 @default.
- W2078236731 hasConcept C207821765 @default.
- W2078236731 hasConcept C3079626 @default.
- W2078236731 hasConcept C57879066 @default.
- W2078236731 hasConcept C62520636 @default.
- W2078236731 hasConcept C74650414 @default.
- W2078236731 hasConcept C82706917 @default.
- W2078236731 hasConceptScore W2078236731C10899652 @default.
- W2078236731 hasConceptScore W2078236731C115260700 @default.
- W2078236731 hasConceptScore W2078236731C121332964 @default.
- W2078236731 hasConceptScore W2078236731C122523270 @default.
- W2078236731 hasConceptScore W2078236731C1276947 @default.
- W2078236731 hasConceptScore W2078236731C12980444 @default.
- W2078236731 hasConceptScore W2078236731C133879193 @default.
- W2078236731 hasConceptScore W2078236731C139653429 @default.
- W2078236731 hasConceptScore W2078236731C15001198 @default.
- W2078236731 hasConceptScore W2078236731C155008239 @default.
- W2078236731 hasConceptScore W2078236731C207821765 @default.
- W2078236731 hasConceptScore W2078236731C3079626 @default.
- W2078236731 hasConceptScore W2078236731C57879066 @default.
- W2078236731 hasConceptScore W2078236731C62520636 @default.
- W2078236731 hasConceptScore W2078236731C74650414 @default.
- W2078236731 hasConceptScore W2078236731C82706917 @default.
- W2078236731 hasIssue "2" @default.
- W2078236731 hasLocation W20782367311 @default.
- W2078236731 hasOpenAccess W2078236731 @default.
- W2078236731 hasPrimaryLocation W20782367311 @default.
- W2078236731 hasRelatedWork W1523310638 @default.
- W2078236731 hasRelatedWork W1662558889 @default.
- W2078236731 hasRelatedWork W1963644600 @default.
- W2078236731 hasRelatedWork W1967328236 @default.
- W2078236731 hasRelatedWork W1978288392 @default.
- W2078236731 hasRelatedWork W1991330386 @default.
- W2078236731 hasRelatedWork W1992701849 @default.
- W2078236731 hasRelatedWork W2003179869 @default.
- W2078236731 hasRelatedWork W2011294970 @default.
- W2078236731 hasRelatedWork W2025581470 @default.
- W2078236731 hasRelatedWork W2042337905 @default.
- W2078236731 hasRelatedWork W2066326334 @default.
- W2078236731 hasRelatedWork W2072000466 @default.
- W2078236731 hasRelatedWork W2081394623 @default.
- W2078236731 hasRelatedWork W2083341006 @default.
- W2078236731 hasRelatedWork W2099053817 @default.
- W2078236731 hasRelatedWork W2133198714 @default.
- W2078236731 hasRelatedWork W2140230289 @default.
- W2078236731 hasRelatedWork W2159828727 @default.
- W2078236731 hasRelatedWork W2166194700 @default.
- W2078236731 hasVolume "510" @default.
- W2078236731 isParatext "false" @default.
- W2078236731 isRetracted "false" @default.
- W2078236731 magId "2078236731" @default.
- W2078236731 workType "article" @default.