Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078251344> ?p ?o ?g. }
- W2078251344 endingPage "283" @default.
- W2078251344 startingPage "275" @default.
- W2078251344 abstract "Methods are needed to characterize short-term exposure to ultrafine particle number concentrations (UFP) for epidemiological studies on the health effects of traffic-related UFP. Our aims were to assess season-specific spatial variation of short-term (20-min) UFP within the city of Basel, Switzerland, and to develop hybrid models for predicting short-term median and mean UFP levels on sidewalks. We collected measurements of UFP for periods of 20 min (MiniDiSC particle counter) and determined traffic volume along sidewalks at 60 locations across the city, during non-rush hours in three seasons. For each monitoring location, detailed spatial characteristics were locally recorded and potential predictor variables were derived from geographic information systems (GIS). We built multivariate regression models to predict local UFP, using concurrent UFP levels measured at a suburban background station, and combinations of meteorological, temporal, GIS and observed site characteristic variables. For a subset of sites, we assessed the relationship between UFP measured on the sidewalk and at the nearby residence (i.e., home outdoor exposure on e.g. balconies). The average median 20-min UFP levels at street and urban background sites were 14,700 ± 9100 particles cm−3 and 9900 ± 8600 particles cm−3, respectively, with the highest levels occurring in winter and the lowest in summer. The most important predictor for all models was the suburban background UFP concentration, explaining 50% and 38% of the variability of the median and mean, respectively. While the models with GIS-derived variables (R2 = 0.61) or observed site characteristics (R2 = 0.63) predicted median UFP levels equally well, mean UFP predictions using only site characteristic variables (R2 = 0.62) showed a better fit than models using only GIS variables (R2 = 0.55). The best model performance was obtained by using a combination of GIS-derived variables and locally observed site characteristics (median: R2 = 0.66; mean: R2 = 0.65). The 20-min UFP concentrations measured at the sidewalk were strongly related (R2 = 0.8) to the concurrent 20-min residential UFP levels nearby. Our results indicate that median UFP can be moderately predicted by means of a suburban background site and GIS-derived traffic and land use variables. In areas and regions where large-scale GIS data are not available, the spatial distribution of traffic-related UFP may be assessed reasonably well by collecting on-site short-term traffic and land-use data." @default.
- W2078251344 created "2016-06-24" @default.
- W2078251344 creator A5003060638 @default.
- W2078251344 creator A5007432814 @default.
- W2078251344 creator A5025394086 @default.
- W2078251344 creator A5026718570 @default.
- W2078251344 creator A5028700984 @default.
- W2078251344 creator A5036536970 @default.
- W2078251344 creator A5036755213 @default.
- W2078251344 creator A5043796974 @default.
- W2078251344 creator A5058094355 @default.
- W2078251344 creator A5058236408 @default.
- W2078251344 creator A5063534091 @default.
- W2078251344 creator A5064165178 @default.
- W2078251344 creator A5071196001 @default.
- W2078251344 creator A5086665597 @default.
- W2078251344 date "2014-10-01" @default.
- W2078251344 modified "2023-09-26" @default.
- W2078251344 title "Spatio-temporal variation of urban ultrafine particle number concentrations" @default.
- W2078251344 cites W1976696372 @default.
- W2078251344 cites W1985812241 @default.
- W2078251344 cites W1991956557 @default.
- W2078251344 cites W1993882987 @default.
- W2078251344 cites W1995415732 @default.
- W2078251344 cites W1998381161 @default.
- W2078251344 cites W2004285423 @default.
- W2078251344 cites W2008596714 @default.
- W2078251344 cites W2029395610 @default.
- W2078251344 cites W2038511719 @default.
- W2078251344 cites W2056740471 @default.
- W2078251344 cites W2062132337 @default.
- W2078251344 cites W2062161746 @default.
- W2078251344 cites W2066544083 @default.
- W2078251344 cites W2083386552 @default.
- W2078251344 cites W2102158401 @default.
- W2078251344 cites W2122723228 @default.
- W2078251344 cites W2149160726 @default.
- W2078251344 cites W2151302463 @default.
- W2078251344 cites W2167257938 @default.
- W2078251344 cites W2316634239 @default.
- W2078251344 cites W2325282659 @default.
- W2078251344 doi "https://doi.org/10.1016/j.atmosenv.2014.07.049" @default.
- W2078251344 hasPublicationYear "2014" @default.
- W2078251344 type Work @default.
- W2078251344 sameAs 2078251344 @default.
- W2078251344 citedByCount "38" @default.
- W2078251344 countsByYear W20782513442015 @default.
- W2078251344 countsByYear W20782513442016 @default.
- W2078251344 countsByYear W20782513442017 @default.
- W2078251344 countsByYear W20782513442019 @default.
- W2078251344 countsByYear W20782513442020 @default.
- W2078251344 countsByYear W20782513442021 @default.
- W2078251344 countsByYear W20782513442022 @default.
- W2078251344 countsByYear W20782513442023 @default.
- W2078251344 crossrefType "journal-article" @default.
- W2078251344 hasAuthorship W2078251344A5003060638 @default.
- W2078251344 hasAuthorship W2078251344A5007432814 @default.
- W2078251344 hasAuthorship W2078251344A5025394086 @default.
- W2078251344 hasAuthorship W2078251344A5026718570 @default.
- W2078251344 hasAuthorship W2078251344A5028700984 @default.
- W2078251344 hasAuthorship W2078251344A5036536970 @default.
- W2078251344 hasAuthorship W2078251344A5036755213 @default.
- W2078251344 hasAuthorship W2078251344A5043796974 @default.
- W2078251344 hasAuthorship W2078251344A5058094355 @default.
- W2078251344 hasAuthorship W2078251344A5058236408 @default.
- W2078251344 hasAuthorship W2078251344A5063534091 @default.
- W2078251344 hasAuthorship W2078251344A5064165178 @default.
- W2078251344 hasAuthorship W2078251344A5071196001 @default.
- W2078251344 hasAuthorship W2078251344A5086665597 @default.
- W2078251344 hasConcept C105795698 @default.
- W2078251344 hasConcept C121332964 @default.
- W2078251344 hasConcept C127313418 @default.
- W2078251344 hasConcept C150032891 @default.
- W2078251344 hasConcept C153294291 @default.
- W2078251344 hasConcept C171250308 @default.
- W2078251344 hasConcept C178790620 @default.
- W2078251344 hasConcept C185592680 @default.
- W2078251344 hasConcept C192562407 @default.
- W2078251344 hasConcept C20556612 @default.
- W2078251344 hasConcept C205649164 @default.
- W2078251344 hasConcept C33923547 @default.
- W2078251344 hasConcept C39432304 @default.
- W2078251344 hasConcept C559116025 @default.
- W2078251344 hasConcept C62520636 @default.
- W2078251344 hasConcept C74412414 @default.
- W2078251344 hasConcept C91586092 @default.
- W2078251344 hasConcept C94747663 @default.
- W2078251344 hasConceptScore W2078251344C105795698 @default.
- W2078251344 hasConceptScore W2078251344C121332964 @default.
- W2078251344 hasConceptScore W2078251344C127313418 @default.
- W2078251344 hasConceptScore W2078251344C150032891 @default.
- W2078251344 hasConceptScore W2078251344C153294291 @default.
- W2078251344 hasConceptScore W2078251344C171250308 @default.
- W2078251344 hasConceptScore W2078251344C178790620 @default.
- W2078251344 hasConceptScore W2078251344C185592680 @default.
- W2078251344 hasConceptScore W2078251344C192562407 @default.
- W2078251344 hasConceptScore W2078251344C20556612 @default.
- W2078251344 hasConceptScore W2078251344C205649164 @default.