Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078254485> ?p ?o ?g. }
- W2078254485 endingPage "1455" @default.
- W2078254485 startingPage "1444" @default.
- W2078254485 abstract "The identification, modeling, and analysis of interactions between nodes of neural systems in the human brain have become the aim of interest of many studies in neuroscience. The complex neural network structure and its correlations with brain functions have played a role in all areas of neuroscience, including the comprehension of cognitive and emotional processing. Indeed, understanding how information is stored, retrieved, processed, and transmitted is one of the ultimate challenges in brain research. In this context, in functional neuroimaging, connectivity analysis is a major tool for the exploration and characterization of the information flow between specialized brain regions. In most functional magnetic resonance imaging (fMRI) studies, connectivity analysis is carried out by first selecting regions of interest (ROI) and then calculating an average BOLD time series (across the voxels in each cluster). Some studies have shown that the average may not be a good choice and have suggested, as an alternative, the use of principal component analysis (PCA) to extract the principal eigen-time series from the ROI(s). In this paper, we introduce a novel approach called cluster Granger analysis (CGA) to study connectivity between ROIs. The main aim of this method was to employ multiple eigen-time series in each ROI to avoid temporal information loss during identification of Granger causality. Such information loss is inherent in averaging (e.g., to yield a single representative time series per ROI). This, in turn, may lead to a lack of power in detecting connections. The proposed approach is based on multivariate statistical analysis and integrates PCA and partial canonical correlation in a framework of Granger causality for clusters (sets) of time series. We also describe an algorithm for statistical significance testing based on bootstrapping. By using Monte Carlo simulations, we show that the proposed approach outperforms conventional Granger causality analysis (i.e., using representative time series extracted by signal averaging or first principal components estimation from ROIs). The usefulness of the CGA approach in real fMRI data is illustrated in an experiment using human faces expressing emotions. With this data set, the proposed approach suggested the presence of significantly more connections between the ROIs than were detected using a single representative time series in each ROI." @default.
- W2078254485 created "2016-06-24" @default.
- W2078254485 creator A5015584871 @default.
- W2078254485 creator A5029606860 @default.
- W2078254485 creator A5067767544 @default.
- W2078254485 creator A5075626456 @default.
- W2078254485 creator A5077765350 @default.
- W2078254485 creator A5089543470 @default.
- W2078254485 date "2010-10-01" @default.
- W2078254485 modified "2023-10-17" @default.
- W2078254485 title "Analyzing the connectivity between regions of interest: An approach based on cluster Granger causality for fMRI data analysis" @default.
- W2078254485 cites W1552578045 @default.
- W2078254485 cites W1963525383 @default.
- W2078254485 cites W1971428016 @default.
- W2078254485 cites W1976386194 @default.
- W2078254485 cites W1976748197 @default.
- W2078254485 cites W1992791394 @default.
- W2078254485 cites W1996779446 @default.
- W2078254485 cites W2007480113 @default.
- W2078254485 cites W2009494091 @default.
- W2078254485 cites W2010891863 @default.
- W2078254485 cites W2013945756 @default.
- W2078254485 cites W2014798602 @default.
- W2078254485 cites W2021768951 @default.
- W2078254485 cites W2025341678 @default.
- W2078254485 cites W2033546704 @default.
- W2078254485 cites W2034089470 @default.
- W2078254485 cites W2041489975 @default.
- W2078254485 cites W2045218416 @default.
- W2078254485 cites W2065750542 @default.
- W2078254485 cites W2070251547 @default.
- W2078254485 cites W2071714163 @default.
- W2078254485 cites W2078515955 @default.
- W2078254485 cites W2079747594 @default.
- W2078254485 cites W2080334324 @default.
- W2078254485 cites W2095182071 @default.
- W2078254485 cites W2099288903 @default.
- W2078254485 cites W2103953991 @default.
- W2078254485 cites W2104575217 @default.
- W2078254485 cites W2106162515 @default.
- W2078254485 cites W2113191728 @default.
- W2078254485 cites W2114104729 @default.
- W2078254485 cites W2117663940 @default.
- W2078254485 cites W2118970118 @default.
- W2078254485 cites W2136562407 @default.
- W2078254485 cites W2140388020 @default.
- W2078254485 cites W2144757720 @default.
- W2078254485 cites W2153549468 @default.
- W2078254485 cites W2154585723 @default.
- W2078254485 cites W2156803951 @default.
- W2078254485 cites W2178225550 @default.
- W2078254485 doi "https://doi.org/10.1016/j.neuroimage.2010.05.022" @default.
- W2078254485 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20472076" @default.
- W2078254485 hasPublicationYear "2010" @default.
- W2078254485 type Work @default.
- W2078254485 sameAs 2078254485 @default.
- W2078254485 citedByCount "53" @default.
- W2078254485 countsByYear W20782544852012 @default.
- W2078254485 countsByYear W20782544852013 @default.
- W2078254485 countsByYear W20782544852014 @default.
- W2078254485 countsByYear W20782544852015 @default.
- W2078254485 countsByYear W20782544852016 @default.
- W2078254485 countsByYear W20782544852017 @default.
- W2078254485 countsByYear W20782544852019 @default.
- W2078254485 countsByYear W20782544852020 @default.
- W2078254485 countsByYear W20782544852021 @default.
- W2078254485 countsByYear W20782544852022 @default.
- W2078254485 countsByYear W20782544852023 @default.
- W2078254485 crossrefType "journal-article" @default.
- W2078254485 hasAuthorship W2078254485A5015584871 @default.
- W2078254485 hasAuthorship W2078254485A5029606860 @default.
- W2078254485 hasAuthorship W2078254485A5067767544 @default.
- W2078254485 hasAuthorship W2078254485A5075626456 @default.
- W2078254485 hasAuthorship W2078254485A5077765350 @default.
- W2078254485 hasAuthorship W2078254485A5089543470 @default.
- W2078254485 hasBestOaLocation W20782544851 @default.
- W2078254485 hasConcept C116834253 @default.
- W2078254485 hasConcept C119857082 @default.
- W2078254485 hasConcept C124101348 @default.
- W2078254485 hasConcept C129824826 @default.
- W2078254485 hasConcept C151730666 @default.
- W2078254485 hasConcept C153180895 @default.
- W2078254485 hasConcept C154945302 @default.
- W2078254485 hasConcept C15744967 @default.
- W2078254485 hasConcept C169760540 @default.
- W2078254485 hasConcept C19609008 @default.
- W2078254485 hasConcept C27438332 @default.
- W2078254485 hasConcept C2779226451 @default.
- W2078254485 hasConcept C2779343474 @default.
- W2078254485 hasConcept C41008148 @default.
- W2078254485 hasConcept C51432778 @default.
- W2078254485 hasConcept C54170458 @default.
- W2078254485 hasConcept C58693492 @default.
- W2078254485 hasConcept C59822182 @default.
- W2078254485 hasConcept C86803240 @default.
- W2078254485 hasConceptScore W2078254485C116834253 @default.
- W2078254485 hasConceptScore W2078254485C119857082 @default.
- W2078254485 hasConceptScore W2078254485C124101348 @default.