Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078266512> ?p ?o ?g. }
- W2078266512 endingPage "799" @default.
- W2078266512 startingPage "792" @default.
- W2078266512 abstract "In electrical resistance tomography (ERT), finite element (FE) meshes of different topologies lead to different sensitivity matrices, which have great influence on the imaging quality of the ERT system. To improve the ill-posedness of the traditional sensitivity matrix and thus to improve the image quality, the reciprocal of the sensitivity matrix condition number is designed as the fitness function, based on which the modified genetic algorithm is utilised to optimise the topology of the FE mesh offline, and the optimised FE mesh is used to generate the sensitivity matrix, which is thereafter applied to image reconstruction using the modified Newton–Raphson algorithm. The feasibility of the proposed method is demonstrated in both simulation and prototype experiments. Comparisons among the mesh the authors optimised, the traditional mesh and meshes modified with other methods (all the meshes have the same number of nodes and elements) show that the proposed method has obviously reduced the condition number of the sensitivity matrix, and thus enhanced the imaging quality." @default.
- W2078266512 created "2016-06-24" @default.
- W2078266512 creator A5055513664 @default.
- W2078266512 creator A5060150695 @default.
- W2078266512 creator A5070768104 @default.
- W2078266512 date "2015-10-01" @default.
- W2078266512 modified "2023-09-24" @default.
- W2078266512 title "Finite element mesh optimisation for improvement of the sensitivity matrix in electrical resistance tomography" @default.
- W2078266512 cites W1893881018 @default.
- W2078266512 cites W1965314915 @default.
- W2078266512 cites W1973749788 @default.
- W2078266512 cites W1974536479 @default.
- W2078266512 cites W1978126768 @default.
- W2078266512 cites W1982739053 @default.
- W2078266512 cites W1987901642 @default.
- W2078266512 cites W1990291152 @default.
- W2078266512 cites W2002606334 @default.
- W2078266512 cites W2007030854 @default.
- W2078266512 cites W2014377620 @default.
- W2078266512 cites W2015804955 @default.
- W2078266512 cites W2023384136 @default.
- W2078266512 cites W2029017626 @default.
- W2078266512 cites W2031276363 @default.
- W2078266512 cites W2043118972 @default.
- W2078266512 cites W2054962225 @default.
- W2078266512 cites W2057434144 @default.
- W2078266512 cites W2062969160 @default.
- W2078266512 cites W2064704207 @default.
- W2078266512 cites W2076173499 @default.
- W2078266512 cites W2077204104 @default.
- W2078266512 cites W2088623609 @default.
- W2078266512 cites W2128521742 @default.
- W2078266512 cites W2137357293 @default.
- W2078266512 cites W2140835714 @default.
- W2078266512 cites W3130571686 @default.
- W2078266512 doi "https://doi.org/10.1049/iet-smt.2014.0319" @default.
- W2078266512 hasPublicationYear "2015" @default.
- W2078266512 type Work @default.
- W2078266512 sameAs 2078266512 @default.
- W2078266512 citedByCount "6" @default.
- W2078266512 countsByYear W20782665122016 @default.
- W2078266512 countsByYear W20782665122017 @default.
- W2078266512 countsByYear W20782665122018 @default.
- W2078266512 countsByYear W20782665122020 @default.
- W2078266512 countsByYear W20782665122021 @default.
- W2078266512 countsByYear W20782665122022 @default.
- W2078266512 crossrefType "journal-article" @default.
- W2078266512 hasAuthorship W2078266512A5055513664 @default.
- W2078266512 hasAuthorship W2078266512A5060150695 @default.
- W2078266512 hasAuthorship W2078266512A5070768104 @default.
- W2078266512 hasConcept C106487976 @default.
- W2078266512 hasConcept C11413529 @default.
- W2078266512 hasConcept C114614502 @default.
- W2078266512 hasConcept C120665830 @default.
- W2078266512 hasConcept C121332964 @default.
- W2078266512 hasConcept C121684516 @default.
- W2078266512 hasConcept C123691950 @default.
- W2078266512 hasConcept C126255220 @default.
- W2078266512 hasConcept C127413603 @default.
- W2078266512 hasConcept C135628077 @default.
- W2078266512 hasConcept C141379421 @default.
- W2078266512 hasConcept C154945302 @default.
- W2078266512 hasConcept C158693339 @default.
- W2078266512 hasConcept C159985019 @default.
- W2078266512 hasConcept C163716698 @default.
- W2078266512 hasConcept C181145010 @default.
- W2078266512 hasConcept C184720557 @default.
- W2078266512 hasConcept C192562407 @default.
- W2078266512 hasConcept C21200559 @default.
- W2078266512 hasConcept C24326235 @default.
- W2078266512 hasConcept C31487907 @default.
- W2078266512 hasConcept C33923547 @default.
- W2078266512 hasConcept C41008148 @default.
- W2078266512 hasConcept C555944384 @default.
- W2078266512 hasConcept C62520636 @default.
- W2078266512 hasConcept C66938386 @default.
- W2078266512 hasConcept C76155785 @default.
- W2078266512 hasConcept C84545080 @default.
- W2078266512 hasConceptScore W2078266512C106487976 @default.
- W2078266512 hasConceptScore W2078266512C11413529 @default.
- W2078266512 hasConceptScore W2078266512C114614502 @default.
- W2078266512 hasConceptScore W2078266512C120665830 @default.
- W2078266512 hasConceptScore W2078266512C121332964 @default.
- W2078266512 hasConceptScore W2078266512C121684516 @default.
- W2078266512 hasConceptScore W2078266512C123691950 @default.
- W2078266512 hasConceptScore W2078266512C126255220 @default.
- W2078266512 hasConceptScore W2078266512C127413603 @default.
- W2078266512 hasConceptScore W2078266512C135628077 @default.
- W2078266512 hasConceptScore W2078266512C141379421 @default.
- W2078266512 hasConceptScore W2078266512C154945302 @default.
- W2078266512 hasConceptScore W2078266512C158693339 @default.
- W2078266512 hasConceptScore W2078266512C159985019 @default.
- W2078266512 hasConceptScore W2078266512C163716698 @default.
- W2078266512 hasConceptScore W2078266512C181145010 @default.
- W2078266512 hasConceptScore W2078266512C184720557 @default.
- W2078266512 hasConceptScore W2078266512C192562407 @default.
- W2078266512 hasConceptScore W2078266512C21200559 @default.
- W2078266512 hasConceptScore W2078266512C24326235 @default.