Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078266987> ?p ?o ?g. }
- W2078266987 endingPage "21" @default.
- W2078266987 startingPage "9" @default.
- W2078266987 abstract "The effects of extended milling in a stirred media mill and a tumbling mill on the structural changes in hematite have been examined using a combination of particle size analysis, BET surface areas, X-ray diffraction (XRD), thermal (TG and DSC) and FTIR measurements. Rietveld's whole profile fitting based on crystal structure refinement and the Warren–Averbach's method of X-ray line profile analysis were applied to monitor the microstructural evolution of the hematite phase. It is found that the BET surface area, X-ray amorphization phase content and XRD line breadths increase over the specific energy input. The use of stirred media mill exhibits larger surface areas, smaller particle sizes, more XRD line broadening and subsequently greater structural distortions compared to the tumbling mill for a given energy input; although the X-ray amorphous phase content remains unaffected by the grinding environments. The maximum X-ray amorphization degree of about 80 and 95% were calculated at a specific energy of 22,400 and 82,000 kJ/kg in the tumbling and stirred media mills respectively. The maximum specific BET surface area in the stirred media and tumbling milling increases to about 72.5 and 6.8 m2/g after 82,000 and 22,400 kJ/kg energy consumption respectively. As a result of structural refinement during milling, the surface-weighted crystallite size in ground hematite are 17 and 4 nm after consuming 22,400 and 82,000 kJ/kg in the tumbling and stirred media mills respectively, corresponding to the volume-weighted crystallite size of 17 and 11 nm. For the same energy consumption in the mills, in turn, the root mean square strain, 〈ɛL=10nm2〉1/2, increases to about 4.4 × 10− 3 and 4.9 × 10− 3. The results of the two applied methods are compared and discussed in details. In addition, thermogravimetric analysis of the wet ground samples reveals that the TG curves represent two weight loss steps. A weight loss is observed around 100 °C in the sample which is attributed to the removal of adsorbed water due to the wet milling operations. A strong weight loss step starting from 100 to 400 °C is attributed to surface/bulk dehydroxilation of iron hydroxides. The weight loss increases with extending of the milling. In contrast, the dry milled samples yield negligible weight losses comparing with the wet ground samples." @default.
- W2078266987 created "2016-06-24" @default.
- W2078266987 creator A5002571925 @default.
- W2078266987 creator A5036113709 @default.
- W2078266987 creator A5072877613 @default.
- W2078266987 creator A5079834563 @default.
- W2078266987 creator A5087679439 @default.
- W2078266987 date "2008-08-01" @default.
- W2078266987 modified "2023-09-27" @default.
- W2078266987 title "Microstructural characterization of hematite during wet and dry millings using Rietveld and XRD line profile analyses" @default.
- W2078266987 cites W1967085880 @default.
- W2078266987 cites W1967811513 @default.
- W2078266987 cites W1978643523 @default.
- W2078266987 cites W1986773204 @default.
- W2078266987 cites W1989811188 @default.
- W2078266987 cites W1997234329 @default.
- W2078266987 cites W1997652591 @default.
- W2078266987 cites W2001950003 @default.
- W2078266987 cites W2021408992 @default.
- W2078266987 cites W2021868774 @default.
- W2078266987 cites W2028810741 @default.
- W2078266987 cites W2029400550 @default.
- W2078266987 cites W2043231365 @default.
- W2078266987 cites W2051178961 @default.
- W2078266987 cites W2061314135 @default.
- W2078266987 cites W2064169868 @default.
- W2078266987 cites W2068120584 @default.
- W2078266987 cites W2069059562 @default.
- W2078266987 cites W2069148638 @default.
- W2078266987 cites W2072073018 @default.
- W2078266987 cites W2106136266 @default.
- W2078266987 cites W2106729829 @default.
- W2078266987 cites W2123518368 @default.
- W2078266987 cites W2162572623 @default.
- W2078266987 cites W2167410055 @default.
- W2078266987 doi "https://doi.org/10.1016/j.powtec.2007.10.027" @default.
- W2078266987 hasPublicationYear "2008" @default.
- W2078266987 type Work @default.
- W2078266987 sameAs 2078266987 @default.
- W2078266987 citedByCount "58" @default.
- W2078266987 countsByYear W20782669872012 @default.
- W2078266987 countsByYear W20782669872013 @default.
- W2078266987 countsByYear W20782669872014 @default.
- W2078266987 countsByYear W20782669872015 @default.
- W2078266987 countsByYear W20782669872016 @default.
- W2078266987 countsByYear W20782669872018 @default.
- W2078266987 countsByYear W20782669872019 @default.
- W2078266987 countsByYear W20782669872020 @default.
- W2078266987 countsByYear W20782669872021 @default.
- W2078266987 countsByYear W20782669872022 @default.
- W2078266987 countsByYear W20782669872023 @default.
- W2078266987 crossrefType "journal-article" @default.
- W2078266987 hasAuthorship W2078266987A5002571925 @default.
- W2078266987 hasAuthorship W2078266987A5036113709 @default.
- W2078266987 hasAuthorship W2078266987A5072877613 @default.
- W2078266987 hasAuthorship W2078266987A5079834563 @default.
- W2078266987 hasAuthorship W2078266987A5087679439 @default.
- W2078266987 hasConcept C113196181 @default.
- W2078266987 hasConcept C115624301 @default.
- W2078266987 hasConcept C115645028 @default.
- W2078266987 hasConcept C127413603 @default.
- W2078266987 hasConcept C137637335 @default.
- W2078266987 hasConcept C150394285 @default.
- W2078266987 hasConcept C150581940 @default.
- W2078266987 hasConcept C161790260 @default.
- W2078266987 hasConcept C178790620 @default.
- W2078266987 hasConcept C185592680 @default.
- W2078266987 hasConcept C187530423 @default.
- W2078266987 hasConcept C191897082 @default.
- W2078266987 hasConcept C192562407 @default.
- W2078266987 hasConcept C199289684 @default.
- W2078266987 hasConcept C199360897 @default.
- W2078266987 hasConcept C2779131772 @default.
- W2078266987 hasConcept C2781285689 @default.
- W2078266987 hasConcept C27923307 @default.
- W2078266987 hasConcept C41008148 @default.
- W2078266987 hasConcept C42360764 @default.
- W2078266987 hasConcept C43617362 @default.
- W2078266987 hasConcept C44280652 @default.
- W2078266987 hasConcept C55493867 @default.
- W2078266987 hasConcept C56052488 @default.
- W2078266987 hasConcept C8010536 @default.
- W2078266987 hasConceptScore W2078266987C113196181 @default.
- W2078266987 hasConceptScore W2078266987C115624301 @default.
- W2078266987 hasConceptScore W2078266987C115645028 @default.
- W2078266987 hasConceptScore W2078266987C127413603 @default.
- W2078266987 hasConceptScore W2078266987C137637335 @default.
- W2078266987 hasConceptScore W2078266987C150394285 @default.
- W2078266987 hasConceptScore W2078266987C150581940 @default.
- W2078266987 hasConceptScore W2078266987C161790260 @default.
- W2078266987 hasConceptScore W2078266987C178790620 @default.
- W2078266987 hasConceptScore W2078266987C185592680 @default.
- W2078266987 hasConceptScore W2078266987C187530423 @default.
- W2078266987 hasConceptScore W2078266987C191897082 @default.
- W2078266987 hasConceptScore W2078266987C192562407 @default.
- W2078266987 hasConceptScore W2078266987C199289684 @default.
- W2078266987 hasConceptScore W2078266987C199360897 @default.
- W2078266987 hasConceptScore W2078266987C2779131772 @default.