Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078280422> ?p ?o ?g. }
- W2078280422 endingPage "171" @default.
- W2078280422 startingPage "164" @default.
- W2078280422 abstract "Revealing the subcellular location of newly discovered protein sequences can bring insight to their function and guide research at the cellular level. The rapidly increasing number of sequences entering the genome databanks has called for the development of automated analysis methods. Currently, most existing methods used to predict protein subcellular locations cover only one, or a very limited number of species. Therefore, it is necessary to develop reliable and effective computational approaches to further improve the performance of protein subcellular prediction and, at the same time, cover more species. The current study reports the development of a novel predictor called MSLoc-DT to predict the protein subcellular locations of human, animal, plant, bacteria, virus, fungi, and archaea by introducing a novel feature extraction approach termed Amino Acid Index Distribution (AAID) and then fusing gene ontology information, sequential evolutionary information, and sequence statistical information through four different modes of pseudo amino acid composition (PseAAC) with a decision template rule. Using the jackknife test, MSLoc-DT can achieve 86.5, 98.3, 90.3, 98.5, 95.9, 98.1, and 99.3% overall accuracy for human, animal, plant, bacteria, virus, fungi, and archaea, respectively, on seven stringent benchmark datasets. Compared with other predictors (e.g., Gpos-PLoc, Gneg-PLoc, Virus-PLoc, Plant-PLoc, Plant-mPLoc, ProLoc-Go, Hum-PLoc, GOASVM) on the gram-positive, gram-negative, virus, plant, eukaryotic, and human datasets, the new MSLoc-DT predictor is much more effective and robust. Although the MSLoc-DT predictor is designed to predict the single location of proteins, our method can be extended to multiple locations of proteins by introducing multilabel machine learning approaches, such as the support vector machine and deep learning, as substitutes for the K-nearest neighbor (KNN) method. As a user-friendly web server, MSLoc-DT is freely accessible at http://bioinfo.ibp.ac.cn/MSLOC_DT/index.html." @default.
- W2078280422 created "2016-06-24" @default.
- W2078280422 creator A5009026385 @default.
- W2078280422 creator A5028978365 @default.
- W2078280422 creator A5038623685 @default.
- W2078280422 creator A5057799604 @default.
- W2078280422 creator A5061712236 @default.
- W2078280422 date "2014-03-01" @default.
- W2078280422 modified "2023-10-11" @default.
- W2078280422 title "MSLoc-DT: A new method for predicting the protein subcellular location of multispecies based on decision templates" @default.
- W2078280422 cites W1561151272 @default.
- W2078280422 cites W1966991202 @default.
- W2078280422 cites W1967696966 @default.
- W2078280422 cites W1977927254 @default.
- W2078280422 cites W1981722221 @default.
- W2078280422 cites W1982289655 @default.
- W2078280422 cites W1982690442 @default.
- W2078280422 cites W1988156053 @default.
- W2078280422 cites W1992577925 @default.
- W2078280422 cites W2009758767 @default.
- W2078280422 cites W2011284357 @default.
- W2078280422 cites W2011334977 @default.
- W2078280422 cites W2012352014 @default.
- W2078280422 cites W2012672486 @default.
- W2078280422 cites W2012686113 @default.
- W2078280422 cites W2016648380 @default.
- W2078280422 cites W2017277794 @default.
- W2078280422 cites W2021357636 @default.
- W2078280422 cites W2031321072 @default.
- W2078280422 cites W2032764078 @default.
- W2078280422 cites W2033588290 @default.
- W2078280422 cites W2033720851 @default.
- W2078280422 cites W2034070267 @default.
- W2078280422 cites W2036154117 @default.
- W2078280422 cites W2036248751 @default.
- W2078280422 cites W2036956828 @default.
- W2078280422 cites W2042112205 @default.
- W2078280422 cites W2043976158 @default.
- W2078280422 cites W2053963319 @default.
- W2078280422 cites W2069389043 @default.
- W2078280422 cites W2074647181 @default.
- W2078280422 cites W2075636838 @default.
- W2078280422 cites W2080915318 @default.
- W2078280422 cites W2082605863 @default.
- W2078280422 cites W2087548537 @default.
- W2078280422 cites W2092641791 @default.
- W2078280422 cites W2096939566 @default.
- W2078280422 cites W2101595316 @default.
- W2078280422 cites W2103017472 @default.
- W2078280422 cites W2104087716 @default.
- W2078280422 cites W2105106533 @default.
- W2078280422 cites W2120026469 @default.
- W2078280422 cites W2123762916 @default.
- W2078280422 cites W2124306486 @default.
- W2078280422 cites W2127103767 @default.
- W2078280422 cites W2133312664 @default.
- W2078280422 cites W2133867990 @default.
- W2078280422 cites W2145957695 @default.
- W2078280422 cites W2151790371 @default.
- W2078280422 cites W2152458080 @default.
- W2078280422 cites W2153153865 @default.
- W2078280422 cites W2156192813 @default.
- W2078280422 cites W2157599860 @default.
- W2078280422 cites W2158173168 @default.
- W2078280422 cites W2161621183 @default.
- W2078280422 cites W2165928787 @default.
- W2078280422 cites W2167071524 @default.
- W2078280422 cites W2170700642 @default.
- W2078280422 doi "https://doi.org/10.1016/j.ab.2013.12.013" @default.
- W2078280422 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24361712" @default.
- W2078280422 hasPublicationYear "2014" @default.
- W2078280422 type Work @default.
- W2078280422 sameAs 2078280422 @default.
- W2078280422 citedByCount "20" @default.
- W2078280422 countsByYear W20782804222014 @default.
- W2078280422 countsByYear W20782804222015 @default.
- W2078280422 countsByYear W20782804222016 @default.
- W2078280422 countsByYear W20782804222017 @default.
- W2078280422 countsByYear W20782804222019 @default.
- W2078280422 countsByYear W20782804222020 @default.
- W2078280422 countsByYear W20782804222022 @default.
- W2078280422 crossrefType "journal-article" @default.
- W2078280422 hasAuthorship W2078280422A5009026385 @default.
- W2078280422 hasAuthorship W2078280422A5028978365 @default.
- W2078280422 hasAuthorship W2078280422A5038623685 @default.
- W2078280422 hasAuthorship W2078280422A5057799604 @default.
- W2078280422 hasAuthorship W2078280422A5061712236 @default.
- W2078280422 hasConcept C104317684 @default.
- W2078280422 hasConcept C150194340 @default.
- W2078280422 hasConcept C2776879804 @default.
- W2078280422 hasConcept C2987395477 @default.
- W2078280422 hasConcept C54355233 @default.
- W2078280422 hasConcept C70721500 @default.
- W2078280422 hasConcept C86803240 @default.
- W2078280422 hasConceptScore W2078280422C104317684 @default.
- W2078280422 hasConceptScore W2078280422C150194340 @default.
- W2078280422 hasConceptScore W2078280422C2776879804 @default.
- W2078280422 hasConceptScore W2078280422C2987395477 @default.