Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078287629> ?p ?o ?g. }
- W2078287629 endingPage "2773" @default.
- W2078287629 startingPage "2752" @default.
- W2078287629 abstract "This paper gives a theoretical treatment of liquid-phase activated barrier crossing that is valid for chemical reactions which occur on typical (e.g., high activation barrier) potential-energy surfaces. This treatment is based on our general approach [S. A. Adelman, Adv. Chem. Phys. 53, 61 (1983)] to problems in liquid-phase chemical dynamics. We focus on the early-time regime [times short compared to the relaxation time of 〈F̃(t)F̃〉0, the fluctuating force autocorrelation function of the reaction coordinate] in which the solvent is nearly ‘‘frozen.’’ This regime has been shown to be important for the determination of the rate constant in the molecular-dynamics simulations of model aqueous SN2 reactions due to Wilson and co-workers. Our treatment is based on a generalized Langevin equation of motion which naturally represents the physics of the early-time regime. In this regime the main features of the reaction dynamics are governed by the instantaneous potential WIP[y,F̃], which accounts for the cage confinement forces which dominate the liquid-phase effects at early times, rather than by the familiar potential of mean force. The instantaneous potential is derived from the t→0 limit of the equation of motion and its properties are developed for both symmetric and nonsymmetric reactions. The potential is then shown to account for both the early-time barrier recrossing processes found to determine the transmission coefficient κ in the SN2 simulations and the dependence of these processes on environmental fluctuations modeled by F̃. Making the parabolic approximation for the gas-phase part of WIP[y,F̃] yields the following result for the transmission coefficient: κ=ω−1PMFx+=ω−1PMFωMIP[1+ω−2 MIPΘ̂(x+)]1/2≠ ω−1PMFω MIP[1+ (1)/(2) ω−2MIPΘ̂(ωMIP)], where ωMIP and ωPMF are, respectively, the barrier frequencies of WIP[y,F̃=0] and of the potential of mean force, and where Θ̂(x+)=∫∞0 exp(−x+t)Θ(t)dt with Θ(t)≡(kBT)−1〈F̃(t)2F〉0. This result for κ, which is equivalent to a result of Grote and Hynes, but which more naturally represents the physics of the early-time regime, permits a straightforward interpretation of the variation of the transmission coefficients for the model SN2 systems." @default.
- W2078287629 created "2016-06-24" @default.
- W2078287629 creator A5004393978 @default.
- W2078287629 creator A5006054354 @default.
- W2078287629 date "1991-08-15" @default.
- W2078287629 modified "2023-09-23" @default.
- W2078287629 title "Theory of liquid-state activated barrier crossing: The instantaneous potential and the parabolic model" @default.
- W2078287629 cites W1966616271 @default.
- W2078287629 cites W1967097295 @default.
- W2078287629 cites W1975124724 @default.
- W2078287629 cites W1975935753 @default.
- W2078287629 cites W1976530119 @default.
- W2078287629 cites W1977546008 @default.
- W2078287629 cites W1979718814 @default.
- W2078287629 cites W1980927524 @default.
- W2078287629 cites W1987306184 @default.
- W2078287629 cites W1993175655 @default.
- W2078287629 cites W2000847446 @default.
- W2078287629 cites W2001270915 @default.
- W2078287629 cites W2004722423 @default.
- W2078287629 cites W2008561011 @default.
- W2078287629 cites W2009720204 @default.
- W2078287629 cites W2014295466 @default.
- W2078287629 cites W2015798177 @default.
- W2078287629 cites W2021361846 @default.
- W2078287629 cites W2022007083 @default.
- W2078287629 cites W2023542782 @default.
- W2078287629 cites W2026820631 @default.
- W2078287629 cites W2030014155 @default.
- W2078287629 cites W2038513243 @default.
- W2078287629 cites W2043685965 @default.
- W2078287629 cites W2043965635 @default.
- W2078287629 cites W2046286471 @default.
- W2078287629 cites W2056498269 @default.
- W2078287629 cites W2059605663 @default.
- W2078287629 cites W2064335909 @default.
- W2078287629 cites W2071210244 @default.
- W2078287629 cites W2072568418 @default.
- W2078287629 cites W2073946973 @default.
- W2078287629 cites W2080539693 @default.
- W2078287629 cites W2081443280 @default.
- W2078287629 cites W2082576514 @default.
- W2078287629 cites W2085266415 @default.
- W2078287629 cites W2090604699 @default.
- W2078287629 cites W2142834594 @default.
- W2078287629 cites W2159514058 @default.
- W2078287629 cites W2162488624 @default.
- W2078287629 cites W2165180793 @default.
- W2078287629 cites W2316755216 @default.
- W2078287629 cites W2327889671 @default.
- W2078287629 cites W2888544893 @default.
- W2078287629 cites W4243703918 @default.
- W2078287629 doi "https://doi.org/10.1063/1.460927" @default.
- W2078287629 hasPublicationYear "1991" @default.
- W2078287629 type Work @default.
- W2078287629 sameAs 2078287629 @default.
- W2078287629 citedByCount "13" @default.
- W2078287629 crossrefType "journal-article" @default.
- W2078287629 hasAuthorship W2078287629A5004393978 @default.
- W2078287629 hasAuthorship W2078287629A5006054354 @default.
- W2078287629 hasConcept C105795698 @default.
- W2078287629 hasConcept C119599485 @default.
- W2078287629 hasConcept C121332964 @default.
- W2078287629 hasConcept C121864883 @default.
- W2078287629 hasConcept C127413603 @default.
- W2078287629 hasConcept C147597530 @default.
- W2078287629 hasConcept C15744967 @default.
- W2078287629 hasConcept C175634916 @default.
- W2078287629 hasConcept C18553476 @default.
- W2078287629 hasConcept C185592680 @default.
- W2078287629 hasConcept C201966971 @default.
- W2078287629 hasConcept C2776029896 @default.
- W2078287629 hasConcept C2776718310 @default.
- W2078287629 hasConcept C2777577648 @default.
- W2078287629 hasConcept C32909587 @default.
- W2078287629 hasConcept C33923547 @default.
- W2078287629 hasConcept C44280652 @default.
- W2078287629 hasConcept C5297727 @default.
- W2078287629 hasConcept C55310301 @default.
- W2078287629 hasConcept C59593255 @default.
- W2078287629 hasConcept C62520636 @default.
- W2078287629 hasConcept C74650414 @default.
- W2078287629 hasConcept C761482 @default.
- W2078287629 hasConcept C77805123 @default.
- W2078287629 hasConcept C84551667 @default.
- W2078287629 hasConcept C97355855 @default.
- W2078287629 hasConceptScore W2078287629C105795698 @default.
- W2078287629 hasConceptScore W2078287629C119599485 @default.
- W2078287629 hasConceptScore W2078287629C121332964 @default.
- W2078287629 hasConceptScore W2078287629C121864883 @default.
- W2078287629 hasConceptScore W2078287629C127413603 @default.
- W2078287629 hasConceptScore W2078287629C147597530 @default.
- W2078287629 hasConceptScore W2078287629C15744967 @default.
- W2078287629 hasConceptScore W2078287629C175634916 @default.
- W2078287629 hasConceptScore W2078287629C18553476 @default.
- W2078287629 hasConceptScore W2078287629C185592680 @default.
- W2078287629 hasConceptScore W2078287629C201966971 @default.
- W2078287629 hasConceptScore W2078287629C2776029896 @default.