Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078287731> ?p ?o ?g. }
- W2078287731 endingPage "78" @default.
- W2078287731 startingPage "67" @default.
- W2078287731 abstract "Soil total nitrogen (STN) and soil total phosphorus (STP), which vary spatially at different scales, play important roles in both agriculture and in the natural environment, especially those related to soil productivity and aquatic eutrophication. However, little information is available about the regional spatial availability of STN and STP and the influence of land use at the regional scale of the Loess Plateau (620,000 km2) of China. Therefore, 764 soil samples were collected from 382 sampling sites across the region in order to determine STN, STP and other related soil properties and to relate them to site characteristics. Classical statistics and geostatistics were used to analyze the current status and spatial pattern of STN and STP. Mean STN and STP concentrations ranged from 0.50 g kg− 1 to 0.81 g kg− 1 and from 0.46 g kg− 1 to 0.61 g kg− 1, respectively, under different land use types. Mean STN and STP densities ranged from 0.27 kg m− 2 to 0.39 kg m− 2 and from 0.27 kg m− 2 to 0.38 kg m− 2, respectively, under different land use types. The concentrations and densities of STN and STP under different land use types were all moderately variable. Land use, precipitation and temperature significantly affected both STN and STP (p < 0.05). The results varied among different precipitation and temperature regions for different land use types. Generally, cropland had higher concentrations and densities of STN and STP than forestland and grassland, and regions with higher precipitation and temperatures had higher STN and STP densities. Significant correlations were found between STN and STP, with selected variables, i.e. soil organic carbon, precipitation, temperature, elevation, latitude, longitude, slope gradient, clay content, silt content and soil pH. The results were not consistent within either STN, or STP, or the land use types. Therefore, land-use specific linear models were derived that predicted STN and STP. Both STN and STP demonstrated moderate spatial dependence. The spatial range of STN and STP ranged from 374 km to 461 km and from 546 km to 664 km, respectively, which were much greater than our sampling intervals (30–50 km). Distribution maps of STN and STP densities, derived by kriging interpolation, showed similar patterns with a central area of low values surrounded by bands of higher values progressively increasing towards the region's boundaries. Stocks of STN and STP were estimated to be 0.217 Pg and 0.205 Pg in the upper 0–40 cm soil layers, which were about 5.4% and 7.3% of the total nitrogen and phosphorus stocks in China. Our study suggests that it is important to take land use into account when considering variations of STN and STP at the regional scale. The spatial data of STN and STP could serve as initial inputs in regional nitrogen and phosphorus models and could be combined with soil erosion data to assess the risks of nitrogen and phosphorus losses to aquatic systems." @default.
- W2078287731 created "2016-06-24" @default.
- W2078287731 creator A5030307213 @default.
- W2078287731 creator A5048254603 @default.
- W2078287731 creator A5082458281 @default.
- W2078287731 date "2013-04-01" @default.
- W2078287731 modified "2023-10-18" @default.
- W2078287731 title "Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China" @default.
- W2078287731 cites W1021393168 @default.
- W2078287731 cites W1788024113 @default.
- W2078287731 cites W1977699688 @default.
- W2078287731 cites W1984384695 @default.
- W2078287731 cites W1987393089 @default.
- W2078287731 cites W1988468088 @default.
- W2078287731 cites W1988491595 @default.
- W2078287731 cites W1990755335 @default.
- W2078287731 cites W1992668584 @default.
- W2078287731 cites W2004760222 @default.
- W2078287731 cites W2008339952 @default.
- W2078287731 cites W2009945155 @default.
- W2078287731 cites W2018422551 @default.
- W2078287731 cites W2018455385 @default.
- W2078287731 cites W2019185595 @default.
- W2078287731 cites W2024697317 @default.
- W2078287731 cites W2026702986 @default.
- W2078287731 cites W2029184190 @default.
- W2078287731 cites W2033241190 @default.
- W2078287731 cites W2033883798 @default.
- W2078287731 cites W2035077734 @default.
- W2078287731 cites W2039029454 @default.
- W2078287731 cites W2039128540 @default.
- W2078287731 cites W2047272790 @default.
- W2078287731 cites W2056193610 @default.
- W2078287731 cites W2057974551 @default.
- W2078287731 cites W2065068512 @default.
- W2078287731 cites W2067664057 @default.
- W2078287731 cites W2075435443 @default.
- W2078287731 cites W2087221440 @default.
- W2078287731 cites W2110227741 @default.
- W2078287731 cites W2110854629 @default.
- W2078287731 cites W2111861972 @default.
- W2078287731 cites W2118398570 @default.
- W2078287731 cites W2119587100 @default.
- W2078287731 cites W2132587174 @default.
- W2078287731 cites W2137166238 @default.
- W2078287731 cites W2143791347 @default.
- W2078287731 cites W2144189317 @default.
- W2078287731 cites W2155693355 @default.
- W2078287731 cites W2156349642 @default.
- W2078287731 cites W2165686389 @default.
- W2078287731 cites W2169988020 @default.
- W2078287731 cites W4231864045 @default.
- W2078287731 doi "https://doi.org/10.1016/j.geoderma.2012.12.011" @default.
- W2078287731 hasPublicationYear "2013" @default.
- W2078287731 type Work @default.
- W2078287731 sameAs 2078287731 @default.
- W2078287731 citedByCount "179" @default.
- W2078287731 countsByYear W20782877312014 @default.
- W2078287731 countsByYear W20782877312015 @default.
- W2078287731 countsByYear W20782877312016 @default.
- W2078287731 countsByYear W20782877312017 @default.
- W2078287731 countsByYear W20782877312018 @default.
- W2078287731 countsByYear W20782877312019 @default.
- W2078287731 countsByYear W20782877312020 @default.
- W2078287731 countsByYear W20782877312021 @default.
- W2078287731 countsByYear W20782877312022 @default.
- W2078287731 countsByYear W20782877312023 @default.
- W2078287731 crossrefType "journal-article" @default.
- W2078287731 hasAuthorship W2078287731A5030307213 @default.
- W2078287731 hasAuthorship W2078287731A5048254603 @default.
- W2078287731 hasAuthorship W2078287731A5082458281 @default.
- W2078287731 hasConcept C105795698 @default.
- W2078287731 hasConcept C107054158 @default.
- W2078287731 hasConcept C114793014 @default.
- W2078287731 hasConcept C125572338 @default.
- W2078287731 hasConcept C127313418 @default.
- W2078287731 hasConcept C134306372 @default.
- W2078287731 hasConcept C142796444 @default.
- W2078287731 hasConcept C153294291 @default.
- W2078287731 hasConcept C159390177 @default.
- W2078287731 hasConcept C185515318 @default.
- W2078287731 hasConcept C186699998 @default.
- W2078287731 hasConcept C187320778 @default.
- W2078287731 hasConcept C18903297 @default.
- W2078287731 hasConcept C205649164 @default.
- W2078287731 hasConcept C2775835988 @default.
- W2078287731 hasConcept C2780030769 @default.
- W2078287731 hasConcept C33923547 @default.
- W2078287731 hasConcept C39432304 @default.
- W2078287731 hasConcept C4792198 @default.
- W2078287731 hasConcept C502990516 @default.
- W2078287731 hasConcept C6557445 @default.
- W2078287731 hasConcept C76886044 @default.
- W2078287731 hasConcept C86803240 @default.
- W2078287731 hasConcept C94747663 @default.
- W2078287731 hasConceptScore W2078287731C105795698 @default.
- W2078287731 hasConceptScore W2078287731C107054158 @default.
- W2078287731 hasConceptScore W2078287731C114793014 @default.