Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078303776> ?p ?o ?g. }
- W2078303776 abstract "Making use of predictions is a crucial, but under-explored, area of online algorithms. This paper studies a class of online optimization problems where we have external noisy predictions available. We propose a stochastic prediction error model that generalizes prior models in the learning and stochastic control communities, incorporates correlation among prediction errors, and captures the fact that predictions improve as time passes. We prove that achieving sublinear regret and constant competitive ratio for online algorithms requires the use of an unbounded prediction window in adversarial settings, but that under more realistic stochastic prediction error models it is possible to use Averaging Fixed Horizon Control (AFHC) to simultaneously achieve sublinear regret and constant competitive ratio in expectation using only a constant-sized prediction window. Furthermore, we show that the performance of AFHC is tightly concentrated around its mean." @default.
- W2078303776 created "2016-06-24" @default.
- W2078303776 creator A5011921013 @default.
- W2078303776 creator A5038657171 @default.
- W2078303776 creator A5039018238 @default.
- W2078303776 creator A5050993305 @default.
- W2078303776 creator A5062565732 @default.
- W2078303776 date "2015-06-15" @default.
- W2078303776 modified "2023-10-17" @default.
- W2078303776 title "Online Convex Optimization Using Predictions" @default.
- W2078303776 cites W1608758704 @default.
- W2078303776 cites W1969353386 @default.
- W2078303776 cites W1978956894 @default.
- W2078303776 cites W2002788332 @default.
- W2078303776 cites W2008193080 @default.
- W2078303776 cites W2019492625 @default.
- W2078303776 cites W2020196954 @default.
- W2078303776 cites W2022815703 @default.
- W2078303776 cites W2026433458 @default.
- W2078303776 cites W2036001459 @default.
- W2078303776 cites W2046227974 @default.
- W2078303776 cites W2052671641 @default.
- W2078303776 cites W2073787051 @default.
- W2078303776 cites W2099204199 @default.
- W2078303776 cites W2100948980 @default.
- W2078303776 cites W2105934661 @default.
- W2078303776 cites W2109449402 @default.
- W2078303776 cites W2113650251 @default.
- W2078303776 cites W2114037820 @default.
- W2078303776 cites W2114538202 @default.
- W2078303776 cites W2115594466 @default.
- W2078303776 cites W2120881346 @default.
- W2078303776 cites W2126869380 @default.
- W2078303776 cites W2128085284 @default.
- W2078303776 cites W2129160848 @default.
- W2078303776 cites W2134666295 @default.
- W2078303776 cites W2143316703 @default.
- W2078303776 cites W2153819496 @default.
- W2078303776 cites W2158468884 @default.
- W2078303776 cites W2167903310 @default.
- W2078303776 cites W2999424480 @default.
- W2078303776 cites W3017285694 @default.
- W2078303776 cites W3101762025 @default.
- W2078303776 cites W3124617746 @default.
- W2078303776 cites W4252723988 @default.
- W2078303776 cites W4254362479 @default.
- W2078303776 cites W88155604 @default.
- W2078303776 doi "https://doi.org/10.1145/2745844.2745854" @default.
- W2078303776 hasPublicationYear "2015" @default.
- W2078303776 type Work @default.
- W2078303776 sameAs 2078303776 @default.
- W2078303776 citedByCount "49" @default.
- W2078303776 countsByYear W20783037762015 @default.
- W2078303776 countsByYear W20783037762016 @default.
- W2078303776 countsByYear W20783037762017 @default.
- W2078303776 countsByYear W20783037762018 @default.
- W2078303776 countsByYear W20783037762019 @default.
- W2078303776 countsByYear W20783037762020 @default.
- W2078303776 countsByYear W20783037762021 @default.
- W2078303776 countsByYear W20783037762022 @default.
- W2078303776 countsByYear W20783037762023 @default.
- W2078303776 crossrefType "proceedings-article" @default.
- W2078303776 hasAuthorship W2078303776A5011921013 @default.
- W2078303776 hasAuthorship W2078303776A5038657171 @default.
- W2078303776 hasAuthorship W2078303776A5039018238 @default.
- W2078303776 hasAuthorship W2078303776A5050993305 @default.
- W2078303776 hasAuthorship W2078303776A5062565732 @default.
- W2078303776 hasBestOaLocation W20783037762 @default.
- W2078303776 hasConcept C102408133 @default.
- W2078303776 hasConcept C112680207 @default.
- W2078303776 hasConcept C11413529 @default.
- W2078303776 hasConcept C117160843 @default.
- W2078303776 hasConcept C119857082 @default.
- W2078303776 hasConcept C126255220 @default.
- W2078303776 hasConcept C134306372 @default.
- W2078303776 hasConcept C154945302 @default.
- W2078303776 hasConcept C157972887 @default.
- W2078303776 hasConcept C194387892 @default.
- W2078303776 hasConcept C196921405 @default.
- W2078303776 hasConcept C199360897 @default.
- W2078303776 hasConcept C2524010 @default.
- W2078303776 hasConcept C26517878 @default.
- W2078303776 hasConcept C2777027219 @default.
- W2078303776 hasConcept C2777212361 @default.
- W2078303776 hasConcept C33923547 @default.
- W2078303776 hasConcept C38652104 @default.
- W2078303776 hasConcept C41008148 @default.
- W2078303776 hasConcept C50817715 @default.
- W2078303776 hasConcept C55479107 @default.
- W2078303776 hasConcept C77553402 @default.
- W2078303776 hasConceptScore W2078303776C102408133 @default.
- W2078303776 hasConceptScore W2078303776C112680207 @default.
- W2078303776 hasConceptScore W2078303776C11413529 @default.
- W2078303776 hasConceptScore W2078303776C117160843 @default.
- W2078303776 hasConceptScore W2078303776C119857082 @default.
- W2078303776 hasConceptScore W2078303776C126255220 @default.
- W2078303776 hasConceptScore W2078303776C134306372 @default.
- W2078303776 hasConceptScore W2078303776C154945302 @default.
- W2078303776 hasConceptScore W2078303776C157972887 @default.
- W2078303776 hasConceptScore W2078303776C194387892 @default.