Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078338227> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2078338227 abstract "We show that, if an abelian lattice-ordered group is archimedean closed, then each principal l-ideal is also archimedean closed. This has given a positive answer to the question raised in 1965 and hence proved that the class of abelian archimedean closed lattice-ordered groups is a radical class. We also provide some conditions for latticeordered group F (∆, R) to be the unique archimedean closure of ∑ (∆, R). Introduction. Throughout, let G be a lattice-ordered group (lgroup). Let Γ be a root system, that is, Γ is a partially ordered set for which {α ∈ Γ | α ≥ γ} is totally ordered, for any γ ∈ Γ. Let {Hγ | γ ∈ Γ} be a collection of abelian totally-ordered groups indexed by Γ. V (Γ, Hγ) is the set of all functions v on Γ for which v(γ) ∈ Hγ and the support of each v satisfies ascending chain condition. V (Γ, Hγ) is an abelian group under addition. Furthermore, if we define an element of V (Γ, Hγ) to be positive, if it is positive at each maximal element of its support, then V (Γ, Hγ) is an abelian l-group, which we call a Hahn group on Γ. ∑ (Γ, Hγ) is the l-subgroup of V (Γ, Hγ) whose elements have finite supports. A root in a root system Γ is a totally ordered subset of Γ. F (Γ, Hγ) is the l-subgroup of V (Γ, Hγ) such that the support of each element is contained in a finite number of roots in Γ. A convex l-subgroup which is maximal with respect to not containing some g ∈ G is called regular and is a value of g. Element g is special if it has a unique value, and in this case the value is called a special value. A convex l-subgroup P of G is prime if a∧b = 0 in G implies that either a ∈ P or b ∈ P . Regular subgroups of G are prime and form a root system under inclusion, written Γ(G). A subset ∆ ⊆ Γ(G) is plenary if ∩∆ = {0} and ∆ is a dual ideal in Γ(G); that is, if δ ∈ ∆, γ ∈ Γ(G) and γ > δ, then γ ∈ ∆. If G is an abelian l-group, then G is l-isomorphic to Received by the editors on September 8, 1998, and in revised form on May 31, 2001. Copyright c ©2004 Rocky Mountain Mathematics Consortium" @default.
- W2078338227 created "2016-06-24" @default.
- W2078338227 creator A5023091926 @default.
- W2078338227 creator A5060455074 @default.
- W2078338227 creator A5077976820 @default.
- W2078338227 date "2004-03-01" @default.
- W2078338227 modified "2023-10-16" @default.
- W2078338227 title "Archimedean Closed Lattice-Ordered Groups" @default.
- W2078338227 cites W1573036064 @default.
- W2078338227 cites W1576904948 @default.
- W2078338227 cites W1618934962 @default.
- W2078338227 cites W192474206 @default.
- W2078338227 cites W1977078867 @default.
- W2078338227 cites W2087835363 @default.
- W2078338227 cites W2500902781 @default.
- W2078338227 cites W575135045 @default.
- W2078338227 doi "https://doi.org/10.1216/rmjm/1181069894" @default.
- W2078338227 hasPublicationYear "2004" @default.
- W2078338227 type Work @default.
- W2078338227 sameAs 2078338227 @default.
- W2078338227 citedByCount "2" @default.
- W2078338227 crossrefType "journal-article" @default.
- W2078338227 hasAuthorship W2078338227A5023091926 @default.
- W2078338227 hasAuthorship W2078338227A5060455074 @default.
- W2078338227 hasAuthorship W2078338227A5077976820 @default.
- W2078338227 hasBestOaLocation W20783382271 @default.
- W2078338227 hasConcept C114614502 @default.
- W2078338227 hasConcept C118615104 @default.
- W2078338227 hasConcept C121332964 @default.
- W2078338227 hasConcept C136170076 @default.
- W2078338227 hasConcept C14669601 @default.
- W2078338227 hasConcept C146834321 @default.
- W2078338227 hasConcept C17744445 @default.
- W2078338227 hasConcept C178790620 @default.
- W2078338227 hasConcept C185592680 @default.
- W2078338227 hasConcept C199539241 @default.
- W2078338227 hasConcept C24890656 @default.
- W2078338227 hasConcept C2781204021 @default.
- W2078338227 hasConcept C2781311116 @default.
- W2078338227 hasConcept C33923547 @default.
- W2078338227 hasConcept C81008192 @default.
- W2078338227 hasConceptScore W2078338227C114614502 @default.
- W2078338227 hasConceptScore W2078338227C118615104 @default.
- W2078338227 hasConceptScore W2078338227C121332964 @default.
- W2078338227 hasConceptScore W2078338227C136170076 @default.
- W2078338227 hasConceptScore W2078338227C14669601 @default.
- W2078338227 hasConceptScore W2078338227C146834321 @default.
- W2078338227 hasConceptScore W2078338227C17744445 @default.
- W2078338227 hasConceptScore W2078338227C178790620 @default.
- W2078338227 hasConceptScore W2078338227C185592680 @default.
- W2078338227 hasConceptScore W2078338227C199539241 @default.
- W2078338227 hasConceptScore W2078338227C24890656 @default.
- W2078338227 hasConceptScore W2078338227C2781204021 @default.
- W2078338227 hasConceptScore W2078338227C2781311116 @default.
- W2078338227 hasConceptScore W2078338227C33923547 @default.
- W2078338227 hasConceptScore W2078338227C81008192 @default.
- W2078338227 hasLocation W20783382271 @default.
- W2078338227 hasLocation W20783382272 @default.
- W2078338227 hasOpenAccess W2078338227 @default.
- W2078338227 hasPrimaryLocation W20783382271 @default.
- W2078338227 hasRelatedWork W1965947491 @default.
- W2078338227 hasRelatedWork W1989920940 @default.
- W2078338227 hasRelatedWork W2017331178 @default.
- W2078338227 hasRelatedWork W2025481977 @default.
- W2078338227 hasRelatedWork W2150075045 @default.
- W2078338227 hasRelatedWork W2260035625 @default.
- W2078338227 hasRelatedWork W2742285599 @default.
- W2078338227 hasRelatedWork W2976797620 @default.
- W2078338227 hasRelatedWork W3124691708 @default.
- W2078338227 hasRelatedWork W4249580765 @default.
- W2078338227 isParatext "false" @default.
- W2078338227 isRetracted "false" @default.
- W2078338227 magId "2078338227" @default.
- W2078338227 workType "article" @default.