Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078339610> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2078339610 endingPage "724" @default.
- W2078339610 startingPage "716" @default.
- W2078339610 abstract "The multilevel thresholding segmentation methods often outperform the bi-level methods. However, their computational complexity will also grow exponentially as the threshold number increases due to the exhaustive search. Genetic algorithms (GAs) can accelerate the optimization calculation but suffer drawbacks such as slow convergence and easy to trap into local optimum. Extracting from several highest performance strings, a strongest scheme can be obtained. With the low performance strings learning from it with a certain probability, the average-fitness of each generation can increase and the computational time will improve. On the other hand, the learning program can also improve the population diversity. This will enhance the stability of the optimization calculation. Experiment results showed that it was very effective for multilevel thresholding." @default.
- W2078339610 created "2016-06-24" @default.
- W2078339610 creator A5028637047 @default.
- W2078339610 creator A5056299305 @default.
- W2078339610 creator A5060859362 @default.
- W2078339610 date "2008-05-01" @default.
- W2078339610 modified "2023-10-14" @default.
- W2078339610 title "The strongest schema learning GA and its application to multilevel thresholding" @default.
- W2078339610 cites W1970800786 @default.
- W2078339610 cites W1972544340 @default.
- W2078339610 cites W1981166861 @default.
- W2078339610 cites W1984153831 @default.
- W2078339610 cites W2021422668 @default.
- W2078339610 cites W2054097208 @default.
- W2078339610 cites W2083970667 @default.
- W2078339610 cites W2094963933 @default.
- W2078339610 cites W2096411220 @default.
- W2078339610 cites W2108044931 @default.
- W2078339610 cites W2132725786 @default.
- W2078339610 cites W2150010279 @default.
- W2078339610 cites W2162232298 @default.
- W2078339610 cites W2167253865 @default.
- W2078339610 cites W2329597464 @default.
- W2078339610 doi "https://doi.org/10.1016/j.imavis.2007.08.007" @default.
- W2078339610 hasPublicationYear "2008" @default.
- W2078339610 type Work @default.
- W2078339610 sameAs 2078339610 @default.
- W2078339610 citedByCount "45" @default.
- W2078339610 countsByYear W20783396102012 @default.
- W2078339610 countsByYear W20783396102013 @default.
- W2078339610 countsByYear W20783396102014 @default.
- W2078339610 countsByYear W20783396102015 @default.
- W2078339610 countsByYear W20783396102016 @default.
- W2078339610 countsByYear W20783396102017 @default.
- W2078339610 countsByYear W20783396102018 @default.
- W2078339610 countsByYear W20783396102019 @default.
- W2078339610 countsByYear W20783396102020 @default.
- W2078339610 countsByYear W20783396102021 @default.
- W2078339610 countsByYear W20783396102023 @default.
- W2078339610 crossrefType "journal-article" @default.
- W2078339610 hasAuthorship W2078339610A5028637047 @default.
- W2078339610 hasAuthorship W2078339610A5056299305 @default.
- W2078339610 hasAuthorship W2078339610A5060859362 @default.
- W2078339610 hasConcept C112972136 @default.
- W2078339610 hasConcept C11413529 @default.
- W2078339610 hasConcept C115961682 @default.
- W2078339610 hasConcept C119857082 @default.
- W2078339610 hasConcept C144024400 @default.
- W2078339610 hasConcept C149923435 @default.
- W2078339610 hasConcept C154945302 @default.
- W2078339610 hasConcept C162324750 @default.
- W2078339610 hasConcept C179799912 @default.
- W2078339610 hasConcept C191178318 @default.
- W2078339610 hasConcept C2777303404 @default.
- W2078339610 hasConcept C2908647359 @default.
- W2078339610 hasConcept C41008148 @default.
- W2078339610 hasConcept C50522688 @default.
- W2078339610 hasConcept C52146309 @default.
- W2078339610 hasConcept C89600930 @default.
- W2078339610 hasConceptScore W2078339610C112972136 @default.
- W2078339610 hasConceptScore W2078339610C11413529 @default.
- W2078339610 hasConceptScore W2078339610C115961682 @default.
- W2078339610 hasConceptScore W2078339610C119857082 @default.
- W2078339610 hasConceptScore W2078339610C144024400 @default.
- W2078339610 hasConceptScore W2078339610C149923435 @default.
- W2078339610 hasConceptScore W2078339610C154945302 @default.
- W2078339610 hasConceptScore W2078339610C162324750 @default.
- W2078339610 hasConceptScore W2078339610C179799912 @default.
- W2078339610 hasConceptScore W2078339610C191178318 @default.
- W2078339610 hasConceptScore W2078339610C2777303404 @default.
- W2078339610 hasConceptScore W2078339610C2908647359 @default.
- W2078339610 hasConceptScore W2078339610C41008148 @default.
- W2078339610 hasConceptScore W2078339610C50522688 @default.
- W2078339610 hasConceptScore W2078339610C52146309 @default.
- W2078339610 hasConceptScore W2078339610C89600930 @default.
- W2078339610 hasIssue "5" @default.
- W2078339610 hasLocation W20783396101 @default.
- W2078339610 hasOpenAccess W2078339610 @default.
- W2078339610 hasPrimaryLocation W20783396101 @default.
- W2078339610 hasRelatedWork W124243839 @default.
- W2078339610 hasRelatedWork W2347731544 @default.
- W2078339610 hasRelatedWork W2386894152 @default.
- W2078339610 hasRelatedWork W2411367154 @default.
- W2078339610 hasRelatedWork W2750730210 @default.
- W2078339610 hasRelatedWork W2959862648 @default.
- W2078339610 hasRelatedWork W2961085424 @default.
- W2078339610 hasRelatedWork W2994101073 @default.
- W2078339610 hasRelatedWork W3103243916 @default.
- W2078339610 hasRelatedWork W2124799266 @default.
- W2078339610 hasVolume "26" @default.
- W2078339610 isParatext "false" @default.
- W2078339610 isRetracted "false" @default.
- W2078339610 magId "2078339610" @default.
- W2078339610 workType "article" @default.