Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078340898> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2078340898 endingPage "5" @default.
- W2078340898 startingPage "1" @default.
- W2078340898 abstract "We define tephras and cryptotephras and their components (mainly ash-sized particles of glass ± crystals in distal deposits) and summarize the basis of tephrochronology as a chronostratigraphic correlational and dating tool for palaeoenvironmental, geological, and archaeological research. We then document and appraise recent advances in analytical methods used to determine the major, minor, and trace elements of individual glass shards from tephra or cryptotephra deposits to aid their correlation and application. Protocols developed recently for the electron probe microanalysis of major elements in individual glass shards help to improve data quality and standardize reporting procedures. A narrow electron beam (diameter ∼3–5 μm) can now be used to analyze smaller glass shards than previously attainable. Reliable analyses of ‘microshards’ (defined here as glass shards <32 μm in diameter) using narrow beams are useful for fine-grained samples from distal or ultra-distal geographic locations, and for vesicular or microlite-rich glass shards or small melt inclusions. Caveats apply, however, in the microprobe analysis of very small microshards (≤∼5 μm in diameter), where particle geometry becomes important, and of microlite-rich glass shards where the potential problem of secondary fluorescence across phase boundaries needs to be recognised. Trace element analyses of individual glass shards using laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), with crater diameters of 20 μm and 10 μm, are now effectively routine, giving detection limits well below 1 ppm. Smaller ablation craters (<10 μm) can be subject to significant element fractionation during analysis, but the systematic relationship of such fractionation with glass composition suggests that analyses for some elements at these resolutions may be quantifiable. In undertaking analyses, either by microprobe or LA-ICP-MS, reference material data acquired using the same procedure, and preferably from the same analytical session, should be presented alongside new analytical data.In part 2 of the review, we describe, critically assess, and recommend ways in which tephras or cryptotephras can be correlated (in conjunction with other information) using numerical or statistical analyses of compositional data. Statistical methods provide a less subjective means of dealing with analytical data pertaining to tephra components (usually glass or crystals/phenocrysts) than heuristic alternatives. They enable a better understanding of relationships among the data from multiple viewpoints to be developed and help quantify the degree of uncertainty in establishing correlations. In common with other scientific hypothesis testing, it is easier to infer using such analysis that two or more tephras are different rather than the same. Adding stratigraphic, chronological, spatial, or palaeoenvironmental data (i.e. multiple criteria) is usually necessary and allows for more robust correlations to be made. A two-stage approach is useful, the first focussed on differences in the mean composition of samples, or their range, which can be visualised graphically via scatterplot matrices or bivariate plots coupled with the use of statistical tools such as distance measures, similarity coefficients, hierarchical cluster analysis (informed by distance measures or similarity or cophenetic coefficients), and principal components analysis (PCA). Some statistical methods (cluster analysis, discriminant analysis) are referred to as ‘machine learning’ in the computing literature. The second stage examines sample variance and the degree of compositional similarity so that sample equivalence or otherwise can be established on a statistical basis. This stage may involve discriminant function analysis (DFA), support vector machines (SVMs), canonical variates analysis (CVA), and ANOVA or MANOVA (or its two-sample special case, the Hotelling two-sample T2 test). Randomization tests can be used where distributional assumptions such as multivariate normality underlying parametric tests are doubtful.Compositional data may be transformed and scaled before being subjected to multivariate statistical procedures including calculation of distance matrices, hierarchical cluster analysis, and PCA. Such transformations may make the assumption of multivariate normality more appropriate. A sequential procedure using Mahalanobis distance and the Hotelling two-sample T2 test is illustrated using glass major element data from trachytic to phonolitic Kenyan tephras. All these methods require a broad range of high-quality compositional data which can be used to compare ‘unknowns’ with reference (training) sets that are sufficiently complete to account for all possible correlatives, including tephras with heterogeneous glasses that contain multiple compositional groups. Currently, incomplete databases are tending to limit correlation efficacy. The development of an open, online global database to facilitate progress towards integrated, high-quality tephrostratigraphic frameworks for different regions is encouraged." @default.
- W2078340898 created "2016-06-24" @default.
- W2078340898 creator A5010047325 @default.
- W2078340898 creator A5022167907 @default.
- W2078340898 creator A5040018271 @default.
- W2078340898 creator A5063130590 @default.
- W2078340898 creator A5077882918 @default.
- W2078340898 date "2011-12-01" @default.
- W2078340898 modified "2023-09-26" @default.
- W2078340898 title "Enhancing tephrochronology and its application (INTREPID project): Hiroshi Machida commemorative volume" @default.
- W2078340898 cites W2015779193 @default.
- W2078340898 cites W2047787144 @default.
- W2078340898 cites W2048690726 @default.
- W2078340898 cites W2049425791 @default.
- W2078340898 cites W2060260335 @default.
- W2078340898 cites W2070033483 @default.
- W2078340898 cites W2092643722 @default.
- W2078340898 cites W2094327248 @default.
- W2078340898 cites W2106272761 @default.
- W2078340898 cites W2328856513 @default.
- W2078340898 doi "https://doi.org/10.1016/j.quaint.2011.08.012" @default.
- W2078340898 hasPublicationYear "2011" @default.
- W2078340898 type Work @default.
- W2078340898 sameAs 2078340898 @default.
- W2078340898 citedByCount "9" @default.
- W2078340898 countsByYear W20783408982013 @default.
- W2078340898 countsByYear W20783408982014 @default.
- W2078340898 countsByYear W20783408982015 @default.
- W2078340898 countsByYear W20783408982016 @default.
- W2078340898 countsByYear W20783408982017 @default.
- W2078340898 countsByYear W20783408982020 @default.
- W2078340898 countsByYear W20783408982022 @default.
- W2078340898 crossrefType "journal-article" @default.
- W2078340898 hasAuthorship W2078340898A5010047325 @default.
- W2078340898 hasAuthorship W2078340898A5022167907 @default.
- W2078340898 hasAuthorship W2078340898A5040018271 @default.
- W2078340898 hasAuthorship W2078340898A5063130590 @default.
- W2078340898 hasAuthorship W2078340898A5077882918 @default.
- W2078340898 hasConcept C120806208 @default.
- W2078340898 hasConcept C121332964 @default.
- W2078340898 hasConcept C127313418 @default.
- W2078340898 hasConcept C138411078 @default.
- W2078340898 hasConcept C17409809 @default.
- W2078340898 hasConcept C179537507 @default.
- W2078340898 hasConcept C192241223 @default.
- W2078340898 hasConcept C199289684 @default.
- W2078340898 hasConcept C2776543301 @default.
- W2078340898 hasConcept C2777981168 @default.
- W2078340898 hasConcept C2909214062 @default.
- W2078340898 hasConcept C34682378 @default.
- W2078340898 hasConcept C87355193 @default.
- W2078340898 hasConcept C87457978 @default.
- W2078340898 hasConceptScore W2078340898C120806208 @default.
- W2078340898 hasConceptScore W2078340898C121332964 @default.
- W2078340898 hasConceptScore W2078340898C127313418 @default.
- W2078340898 hasConceptScore W2078340898C138411078 @default.
- W2078340898 hasConceptScore W2078340898C17409809 @default.
- W2078340898 hasConceptScore W2078340898C179537507 @default.
- W2078340898 hasConceptScore W2078340898C192241223 @default.
- W2078340898 hasConceptScore W2078340898C199289684 @default.
- W2078340898 hasConceptScore W2078340898C2776543301 @default.
- W2078340898 hasConceptScore W2078340898C2777981168 @default.
- W2078340898 hasConceptScore W2078340898C2909214062 @default.
- W2078340898 hasConceptScore W2078340898C34682378 @default.
- W2078340898 hasConceptScore W2078340898C87355193 @default.
- W2078340898 hasConceptScore W2078340898C87457978 @default.
- W2078340898 hasIssue "1-2" @default.
- W2078340898 hasLocation W20783408981 @default.
- W2078340898 hasOpenAccess W2078340898 @default.
- W2078340898 hasPrimaryLocation W20783408981 @default.
- W2078340898 hasRelatedWork W1053499472 @default.
- W2078340898 hasRelatedWork W1632626761 @default.
- W2078340898 hasRelatedWork W2018206452 @default.
- W2078340898 hasRelatedWork W2053674275 @default.
- W2078340898 hasRelatedWork W2067344713 @default.
- W2078340898 hasRelatedWork W2078340898 @default.
- W2078340898 hasRelatedWork W2090660339 @default.
- W2078340898 hasRelatedWork W2536163622 @default.
- W2078340898 hasRelatedWork W2755582632 @default.
- W2078340898 hasRelatedWork W3201525370 @default.
- W2078340898 hasVolume "246" @default.
- W2078340898 isParatext "false" @default.
- W2078340898 isRetracted "false" @default.
- W2078340898 magId "2078340898" @default.
- W2078340898 workType "article" @default.