Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078365611> ?p ?o ?g. }
- W2078365611 endingPage "257" @default.
- W2078365611 startingPage "249" @default.
- W2078365611 abstract "Real-time fault diagnostic system is very important to maintain the operation of the gas turbine generator system (GTGS) in power plants, where any abnormal situation will interrupt the electricity supply. The GTGS is complicated and has many types of component faults. To prevent from interruption of electricity supply, a reliable and quick response framework for real-time fault diagnosis of the GTGS is necessary. As the architecture and the learning algorithm of extreme learning machine (ELM) are simple and effective respectively, ELM can identify faults quickly and precisely as compared with traditional identification techniques such as support vector machines (SVM). This paper therefore proposes a new application of ELM for building a real-time fault diagnostic system in which data pre-processing techniques are integrated. In terms of data pre-processing, wavelet packet transform and time-domain statistical features are proposed for extraction of vibration signal features. Kernel principal component analysis is then applied to further reduce the redundant features in order to shorten the fault identification time and improve accuracy. To evaluate the system performance, a comparison between ELM and the prevailing SVM on the fault detection was conducted. Experimental results show that the proposed diagnostic framework can detect component faults much faster than SVM, while ELM is competitive with SVM in accuracy. This paper is also the first in the literature that explores the superiority of the fault identification time of ELM." @default.
- W2078365611 created "2016-06-24" @default.
- W2078365611 creator A5011123518 @default.
- W2078365611 creator A5055125557 @default.
- W2078365611 creator A5063490642 @default.
- W2078365611 creator A5076922237 @default.
- W2078365611 date "2014-03-01" @default.
- W2078365611 modified "2023-10-13" @default.
- W2078365611 title "Real-time fault diagnosis for gas turbine generator systems using extreme learning machine" @default.
- W2078365611 cites W1974511160 @default.
- W2078365611 cites W1990989813 @default.
- W2078365611 cites W1992139774 @default.
- W2078365611 cites W1999408102 @default.
- W2078365611 cites W2007260466 @default.
- W2078365611 cites W2008598341 @default.
- W2078365611 cites W2011032464 @default.
- W2078365611 cites W2020355555 @default.
- W2078365611 cites W2026131661 @default.
- W2078365611 cites W2026441262 @default.
- W2078365611 cites W2031321561 @default.
- W2078365611 cites W2033871075 @default.
- W2078365611 cites W2035009350 @default.
- W2078365611 cites W2048522269 @default.
- W2078365611 cites W2058096352 @default.
- W2078365611 cites W2067802406 @default.
- W2078365611 cites W2073350673 @default.
- W2078365611 cites W2074724805 @default.
- W2078365611 cites W2078686603 @default.
- W2078365611 cites W2105681109 @default.
- W2078365611 cites W2111072639 @default.
- W2078365611 cites W2111270626 @default.
- W2078365611 cites W2118680073 @default.
- W2078365611 cites W2152860472 @default.
- W2078365611 cites W2155350387 @default.
- W2078365611 cites W2157595416 @default.
- W2078365611 cites W2160987092 @default.
- W2078365611 cites W4240658626 @default.
- W2078365611 cites W1978493817 @default.
- W2078365611 doi "https://doi.org/10.1016/j.neucom.2013.03.059" @default.
- W2078365611 hasPublicationYear "2014" @default.
- W2078365611 type Work @default.
- W2078365611 sameAs 2078365611 @default.
- W2078365611 citedByCount "131" @default.
- W2078365611 countsByYear W20783656112015 @default.
- W2078365611 countsByYear W20783656112016 @default.
- W2078365611 countsByYear W20783656112017 @default.
- W2078365611 countsByYear W20783656112018 @default.
- W2078365611 countsByYear W20783656112019 @default.
- W2078365611 countsByYear W20783656112020 @default.
- W2078365611 countsByYear W20783656112021 @default.
- W2078365611 countsByYear W20783656112022 @default.
- W2078365611 countsByYear W20783656112023 @default.
- W2078365611 crossrefType "journal-article" @default.
- W2078365611 hasAuthorship W2078365611A5011123518 @default.
- W2078365611 hasAuthorship W2078365611A5055125557 @default.
- W2078365611 hasAuthorship W2078365611A5063490642 @default.
- W2078365611 hasAuthorship W2078365611A5076922237 @default.
- W2078365611 hasConcept C103824480 @default.
- W2078365611 hasConcept C116834253 @default.
- W2078365611 hasConcept C119857082 @default.
- W2078365611 hasConcept C12267149 @default.
- W2078365611 hasConcept C127313418 @default.
- W2078365611 hasConcept C152745839 @default.
- W2078365611 hasConcept C154945302 @default.
- W2078365611 hasConcept C165205528 @default.
- W2078365611 hasConcept C172707124 @default.
- W2078365611 hasConcept C175551986 @default.
- W2078365611 hasConcept C2780150128 @default.
- W2078365611 hasConcept C31972630 @default.
- W2078365611 hasConcept C41008148 @default.
- W2078365611 hasConcept C41661131 @default.
- W2078365611 hasConcept C50644808 @default.
- W2078365611 hasConcept C59822182 @default.
- W2078365611 hasConcept C761482 @default.
- W2078365611 hasConcept C76155785 @default.
- W2078365611 hasConcept C79403827 @default.
- W2078365611 hasConcept C86803240 @default.
- W2078365611 hasConceptScore W2078365611C103824480 @default.
- W2078365611 hasConceptScore W2078365611C116834253 @default.
- W2078365611 hasConceptScore W2078365611C119857082 @default.
- W2078365611 hasConceptScore W2078365611C12267149 @default.
- W2078365611 hasConceptScore W2078365611C127313418 @default.
- W2078365611 hasConceptScore W2078365611C152745839 @default.
- W2078365611 hasConceptScore W2078365611C154945302 @default.
- W2078365611 hasConceptScore W2078365611C165205528 @default.
- W2078365611 hasConceptScore W2078365611C172707124 @default.
- W2078365611 hasConceptScore W2078365611C175551986 @default.
- W2078365611 hasConceptScore W2078365611C2780150128 @default.
- W2078365611 hasConceptScore W2078365611C31972630 @default.
- W2078365611 hasConceptScore W2078365611C41008148 @default.
- W2078365611 hasConceptScore W2078365611C41661131 @default.
- W2078365611 hasConceptScore W2078365611C50644808 @default.
- W2078365611 hasConceptScore W2078365611C59822182 @default.
- W2078365611 hasConceptScore W2078365611C761482 @default.
- W2078365611 hasConceptScore W2078365611C76155785 @default.
- W2078365611 hasConceptScore W2078365611C79403827 @default.
- W2078365611 hasConceptScore W2078365611C86803240 @default.
- W2078365611 hasLocation W20783656111 @default.