Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078381696> ?p ?o ?g. }
- W2078381696 endingPage "2254" @default.
- W2078381696 startingPage "2241" @default.
- W2078381696 abstract "This paper introduces a novel sparse Bayesian machine-learning algorithm for embedded feature selection in classification tasks. Our proposed algorithm, called the relevance sample feature machine (RSFM), is able to simultaneously choose the relevance samples and also the relevance features for regression or classification problems. We propose a separable model in feature and sample domains. Adopting a Bayesian approach and using Gaussian priors, the learned model by RSFM is sparse in both sample and feature domains. The proposed algorithm is an extension of the standard RVM algorithm, which only opts for sparsity in the sample domain. Experimental comparisons on synthetic as well as benchmark data sets show that RSFM is successful in both feature selection (eliminating the irrelevant features) and accurate classification. The main advantages of our proposed algorithm are: less system complexity, better generalization and avoiding overfitting, and less computational cost during the testing stage." @default.
- W2078381696 created "2016-06-24" @default.
- W2078381696 creator A5019257307 @default.
- W2078381696 creator A5026338484 @default.
- W2078381696 creator A5031675027 @default.
- W2078381696 creator A5057801943 @default.
- W2078381696 creator A5090489682 @default.
- W2078381696 date "2013-12-01" @default.
- W2078381696 modified "2023-09-27" @default.
- W2078381696 title "The Relevance Sample-Feature Machine: A Sparse Bayesian Learning Approach to Joint Feature-Sample Selection" @default.
- W2078381696 cites W1601239162 @default.
- W2078381696 cites W1648445109 @default.
- W2078381696 cites W1851258275 @default.
- W2078381696 cites W1972463381 @default.
- W2078381696 cites W1977266298 @default.
- W2078381696 cites W1997313699 @default.
- W2078381696 cites W2031063655 @default.
- W2078381696 cites W2031823405 @default.
- W2078381696 cites W2039845656 @default.
- W2078381696 cites W2040127222 @default.
- W2078381696 cites W2041585923 @default.
- W2078381696 cites W2057144102 @default.
- W2078381696 cites W2064341675 @default.
- W2078381696 cites W2088538739 @default.
- W2078381696 cites W2115215821 @default.
- W2078381696 cites W2117063635 @default.
- W2078381696 cites W2119479037 @default.
- W2078381696 cites W2119632409 @default.
- W2078381696 cites W2141439367 @default.
- W2078381696 cites W2146571341 @default.
- W2078381696 cites W2150057984 @default.
- W2078381696 cites W2155953067 @default.
- W2078381696 cites W2158268505 @default.
- W2078381696 cites W2158825237 @default.
- W2078381696 cites W2159257417 @default.
- W2078381696 cites W2159611475 @default.
- W2078381696 cites W2166361453 @default.
- W2078381696 cites W2170762075 @default.
- W2078381696 cites W2611104316 @default.
- W2078381696 doi "https://doi.org/10.1109/tcyb.2013.2260736" @default.
- W2078381696 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23782842" @default.
- W2078381696 hasPublicationYear "2013" @default.
- W2078381696 type Work @default.
- W2078381696 sameAs 2078381696 @default.
- W2078381696 citedByCount "52" @default.
- W2078381696 countsByYear W20783816962014 @default.
- W2078381696 countsByYear W20783816962015 @default.
- W2078381696 countsByYear W20783816962016 @default.
- W2078381696 countsByYear W20783816962017 @default.
- W2078381696 countsByYear W20783816962018 @default.
- W2078381696 countsByYear W20783816962019 @default.
- W2078381696 countsByYear W20783816962020 @default.
- W2078381696 countsByYear W20783816962021 @default.
- W2078381696 countsByYear W20783816962022 @default.
- W2078381696 countsByYear W20783816962023 @default.
- W2078381696 crossrefType "journal-article" @default.
- W2078381696 hasAuthorship W2078381696A5019257307 @default.
- W2078381696 hasAuthorship W2078381696A5026338484 @default.
- W2078381696 hasAuthorship W2078381696A5031675027 @default.
- W2078381696 hasAuthorship W2078381696A5057801943 @default.
- W2078381696 hasAuthorship W2078381696A5090489682 @default.
- W2078381696 hasConcept C107673813 @default.
- W2078381696 hasConcept C119857082 @default.
- W2078381696 hasConcept C12267149 @default.
- W2078381696 hasConcept C13280743 @default.
- W2078381696 hasConcept C138885662 @default.
- W2078381696 hasConcept C148483581 @default.
- W2078381696 hasConcept C14948415 @default.
- W2078381696 hasConcept C153180895 @default.
- W2078381696 hasConcept C154945302 @default.
- W2078381696 hasConcept C158154518 @default.
- W2078381696 hasConcept C17744445 @default.
- W2078381696 hasConcept C185592680 @default.
- W2078381696 hasConcept C185798385 @default.
- W2078381696 hasConcept C198531522 @default.
- W2078381696 hasConcept C199539241 @default.
- W2078381696 hasConcept C205649164 @default.
- W2078381696 hasConcept C22019652 @default.
- W2078381696 hasConcept C2776401178 @default.
- W2078381696 hasConcept C41008148 @default.
- W2078381696 hasConcept C41895202 @default.
- W2078381696 hasConcept C43617362 @default.
- W2078381696 hasConcept C50644808 @default.
- W2078381696 hasConceptScore W2078381696C107673813 @default.
- W2078381696 hasConceptScore W2078381696C119857082 @default.
- W2078381696 hasConceptScore W2078381696C12267149 @default.
- W2078381696 hasConceptScore W2078381696C13280743 @default.
- W2078381696 hasConceptScore W2078381696C138885662 @default.
- W2078381696 hasConceptScore W2078381696C148483581 @default.
- W2078381696 hasConceptScore W2078381696C14948415 @default.
- W2078381696 hasConceptScore W2078381696C153180895 @default.
- W2078381696 hasConceptScore W2078381696C154945302 @default.
- W2078381696 hasConceptScore W2078381696C158154518 @default.
- W2078381696 hasConceptScore W2078381696C17744445 @default.
- W2078381696 hasConceptScore W2078381696C185592680 @default.
- W2078381696 hasConceptScore W2078381696C185798385 @default.
- W2078381696 hasConceptScore W2078381696C198531522 @default.
- W2078381696 hasConceptScore W2078381696C199539241 @default.