Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078383588> ?p ?o ?g. }
- W2078383588 endingPage "47" @default.
- W2078383588 startingPage "36" @default.
- W2078383588 abstract "We report the first Re–Os isotope data for samples from Mesoproterozoic kimberlite and lamproite occurrences from the Eastern Dharwar craton and end-Cretaceous Kodomali orangeite from the Bastar craton, India. The Re concentrations of the kimberlites (n = 10) range from 0.077 to 0.290 parts per billion (ppb) whereas the Os contents vary from 0.312 to 1.98 ppb. The measured 187Os/188Os ratios range from 0.1143 to 0.1655. The calculated initial 187Os/188Os ratios range from 0.0967 to 0.1260, with low values indicating Re mobility on the whole-rock scale since crystallisation. The orangeite has a measured 187Os/188Os ratio of 0.1342 and a slightly higher initial 187Os/188Os value of 0.1330. On the other hand, the lamproites (n = 3) display lower Re (0.031 to 0.279 ppb) and Os (0.060 to 0.129 ppb) contents. Their measured 187Os/188Os ratios (0.2398 to 0.7521) and their initial 187Os/188Os ratios (0.1891 to 0.5499) are significantly higher. A majority of the kimberlites display γOsi of − 2.7 to − 22.7 and imply their interaction with a depleted or unradiogenic source such as cratonic lithosphere. A regression age (involving 187Re/188Os vs 187Os/188Os) of 1008 ± 410 Ma for eight least altered kimberlites corresponds, within the error limits, to their emplacement age (1.1 Ga) and negates mixing of a highly radiogenic low Os melt, similar to the lamproites, and lithospheric mantle in their genesis. The most Re-depleted kimberlite sample with the lowest present-day 187Os/188Os (0.1143) yields a model age (TMA) of 3.2 Ga and a Re-depletion model age (TRD) of 2 Ga. The TRD age reveals: (i) the involvement of Proterozoic lithosphere in the genesis of the kimberlites, (ii) coupling of the continental crust of the Eastern Dharwar craton and the underlying sub-continental lithospheric mantle from 2.5 Ga to at least 1.1 Ga, and (iii) its similarity with the emplacement age of large igneous provinces of similar age and magmatism in the Eastern Dharwar and Bastar cratons (India), the Superior Craton (Canada) and the Kaapvaal craton (southern Africa). However, two of the kimberlite samples (from Raichur and Narayanpet kimberlite fields) show positive γOs values ranging from 2.9 to 3.6 suggesting involvement of multiple sources (e.g., subduction, plume or metasomatised lithosphere) in their genesis. An enriched mantle source for the Kodomali orangeite (γOs = 3) is also supported by its lower εNdi values. The lamproites have very radiogenic γOsi values of 56 to 355, similar to those displayed by the lamproites of the Italian peninsula, and indicate a source with elevated Re/Os, possibly a subducted component. Our study provides strong evidence for contrasting mantle sources for kimberlites and lamproites in the Eastern Dharwar craton, southern India." @default.
- W2078383588 created "2016-06-24" @default.
- W2078383588 creator A5021368053 @default.
- W2078383588 creator A5035714104 @default.
- W2078383588 creator A5074534738 @default.
- W2078383588 creator A5083732449 @default.
- W2078383588 date "2013-08-01" @default.
- W2078383588 modified "2023-10-01" @default.
- W2078383588 title "Re–Os isotope study of Indian kimberlites and lamproites: Implications for mantle source regions and cratonic evolution" @default.
- W2078383588 cites W1645393491 @default.
- W2078383588 cites W1967039263 @default.
- W2078383588 cites W1969957338 @default.
- W2078383588 cites W1969969454 @default.
- W2078383588 cites W1970692584 @default.
- W2078383588 cites W1976869484 @default.
- W2078383588 cites W1978263214 @default.
- W2078383588 cites W1980224350 @default.
- W2078383588 cites W1987112298 @default.
- W2078383588 cites W1988980275 @default.
- W2078383588 cites W1991820714 @default.
- W2078383588 cites W1993461691 @default.
- W2078383588 cites W2002533157 @default.
- W2078383588 cites W2006396228 @default.
- W2078383588 cites W2006420218 @default.
- W2078383588 cites W2007774322 @default.
- W2078383588 cites W2007959895 @default.
- W2078383588 cites W2008350311 @default.
- W2078383588 cites W2010312211 @default.
- W2078383588 cites W2011332758 @default.
- W2078383588 cites W2012553199 @default.
- W2078383588 cites W2014556122 @default.
- W2078383588 cites W2014616085 @default.
- W2078383588 cites W2016006248 @default.
- W2078383588 cites W2017797329 @default.
- W2078383588 cites W2017855324 @default.
- W2078383588 cites W2021074869 @default.
- W2078383588 cites W2021112336 @default.
- W2078383588 cites W2026058603 @default.
- W2078383588 cites W2026139978 @default.
- W2078383588 cites W2028339792 @default.
- W2078383588 cites W2030618426 @default.
- W2078383588 cites W2032113299 @default.
- W2078383588 cites W2032701794 @default.
- W2078383588 cites W2033346276 @default.
- W2078383588 cites W2034632918 @default.
- W2078383588 cites W2045557493 @default.
- W2078383588 cites W2046560796 @default.
- W2078383588 cites W2047151621 @default.
- W2078383588 cites W2050682386 @default.
- W2078383588 cites W2050804688 @default.
- W2078383588 cites W2054486238 @default.
- W2078383588 cites W2055351422 @default.
- W2078383588 cites W2055424290 @default.
- W2078383588 cites W2058128109 @default.
- W2078383588 cites W2059936946 @default.
- W2078383588 cites W2060423005 @default.
- W2078383588 cites W2064656154 @default.
- W2078383588 cites W2065896709 @default.
- W2078383588 cites W2069879942 @default.
- W2078383588 cites W2070649406 @default.
- W2078383588 cites W2070738630 @default.
- W2078383588 cites W2072709625 @default.
- W2078383588 cites W2072741237 @default.
- W2078383588 cites W2076511463 @default.
- W2078383588 cites W2081163481 @default.
- W2078383588 cites W2094073617 @default.
- W2078383588 cites W2098071006 @default.
- W2078383588 cites W2103527049 @default.
- W2078383588 cites W2107139533 @default.
- W2078383588 cites W2110725824 @default.
- W2078383588 cites W2127527063 @default.
- W2078383588 cites W2134504371 @default.
- W2078383588 cites W2136578774 @default.
- W2078383588 cites W2139279112 @default.
- W2078383588 cites W2139551431 @default.
- W2078383588 cites W2147711068 @default.
- W2078383588 cites W2151010548 @default.
- W2078383588 cites W2155633223 @default.
- W2078383588 cites W2164234869 @default.
- W2078383588 cites W2165713568 @default.
- W2078383588 cites W2166632770 @default.
- W2078383588 cites W2166902260 @default.
- W2078383588 cites W2170349491 @default.
- W2078383588 cites W2171065804 @default.
- W2078383588 cites W2171116696 @default.
- W2078383588 cites W2314681610 @default.
- W2078383588 cites W4240191614 @default.
- W2078383588 doi "https://doi.org/10.1016/j.chemgeo.2012.12.013" @default.
- W2078383588 hasPublicationYear "2013" @default.
- W2078383588 type Work @default.
- W2078383588 sameAs 2078383588 @default.
- W2078383588 citedByCount "49" @default.
- W2078383588 countsByYear W20783835882013 @default.
- W2078383588 countsByYear W20783835882014 @default.
- W2078383588 countsByYear W20783835882015 @default.
- W2078383588 countsByYear W20783835882016 @default.
- W2078383588 countsByYear W20783835882017 @default.
- W2078383588 countsByYear W20783835882018 @default.