Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078422487> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2078422487 endingPage "39" @default.
- W2078422487 startingPage "32" @default.
- W2078422487 abstract "An improved novel non-linear time series prediction method is presented based on optimizing the combination of non-linear signal analysis and deterministic chaos techniques with Artificial Neural Networks of the Multilayer Perceptron (MLP) type. The proposed methodology has been applied to the non-linear time series produced by a diode resonator chaotic circuit. Multisim is used to simulate the circuit and show the presence of chaos. The first stage of the proposed approach employs a non-linear time series analysis module applying the method proposed by Grasberger and Procaccia, involving estimation of the correlation and minimum embedding dimension as well as of the corresponding largest Lyapunov exponent in combination with a nearest neighbour-based non-linear signal predictor. The two previously mentioned modules are used to construct the first stage of a one-step/multistep predictor while a back-propagation MLP is involved in the second stage to enhance prediction results. The novelty of the proposed two-stage predictor lies on that the back-propagation MLP is employed as an error predictor of the nearest neighbour-based first-stage non-linear signal forecasting application following an efficient strategy for optimizing the combination of nearest neighbour prediction based on deterministic chaos techniques and MLP neural networks. This novel two-stage predictor is evaluated through an extensive experimental study and is favourably compared with rival approaches." @default.
- W2078422487 created "2016-06-24" @default.
- W2078422487 creator A5002850928 @default.
- W2078422487 creator A5062196520 @default.
- W2078422487 date "2009-02-01" @default.
- W2078422487 modified "2023-09-27" @default.
- W2078422487 title "On efficient multistep non-linear time series prediction in chaotic diode resonator circuits by optimizing the combination of non-linear time series analysis and neural networks" @default.
- W2078422487 cites W1605629431 @default.
- W2078422487 cites W1971046812 @default.
- W2078422487 cites W1976912535 @default.
- W2078422487 cites W1981422381 @default.
- W2078422487 cites W2029401646 @default.
- W2078422487 cites W2040704490 @default.
- W2078422487 cites W2042545940 @default.
- W2078422487 cites W2053437902 @default.
- W2078422487 cites W2054889292 @default.
- W2078422487 cites W2056651346 @default.
- W2078422487 cites W2079687891 @default.
- W2078422487 cites W2094916736 @default.
- W2078422487 cites W2098008772 @default.
- W2078422487 cites W2152254020 @default.
- W2078422487 doi "https://doi.org/10.1016/j.engappai.2008.04.016" @default.
- W2078422487 hasPublicationYear "2009" @default.
- W2078422487 type Work @default.
- W2078422487 sameAs 2078422487 @default.
- W2078422487 citedByCount "11" @default.
- W2078422487 countsByYear W20784224872012 @default.
- W2078422487 countsByYear W20784224872016 @default.
- W2078422487 countsByYear W20784224872020 @default.
- W2078422487 countsByYear W20784224872022 @default.
- W2078422487 crossrefType "journal-article" @default.
- W2078422487 hasAuthorship W2078422487A5002850928 @default.
- W2078422487 hasAuthorship W2078422487A5062196520 @default.
- W2078422487 hasConcept C11413529 @default.
- W2078422487 hasConcept C119599485 @default.
- W2078422487 hasConcept C119857082 @default.
- W2078422487 hasConcept C127413603 @default.
- W2078422487 hasConcept C134146338 @default.
- W2078422487 hasConcept C143724316 @default.
- W2078422487 hasConcept C151406439 @default.
- W2078422487 hasConcept C151730666 @default.
- W2078422487 hasConcept C154945302 @default.
- W2078422487 hasConcept C192562407 @default.
- W2078422487 hasConcept C2777052490 @default.
- W2078422487 hasConcept C41008148 @default.
- W2078422487 hasConcept C49040817 @default.
- W2078422487 hasConcept C50644808 @default.
- W2078422487 hasConcept C78434282 @default.
- W2078422487 hasConcept C86803240 @default.
- W2078422487 hasConcept C97126364 @default.
- W2078422487 hasConceptScore W2078422487C11413529 @default.
- W2078422487 hasConceptScore W2078422487C119599485 @default.
- W2078422487 hasConceptScore W2078422487C119857082 @default.
- W2078422487 hasConceptScore W2078422487C127413603 @default.
- W2078422487 hasConceptScore W2078422487C134146338 @default.
- W2078422487 hasConceptScore W2078422487C143724316 @default.
- W2078422487 hasConceptScore W2078422487C151406439 @default.
- W2078422487 hasConceptScore W2078422487C151730666 @default.
- W2078422487 hasConceptScore W2078422487C154945302 @default.
- W2078422487 hasConceptScore W2078422487C192562407 @default.
- W2078422487 hasConceptScore W2078422487C2777052490 @default.
- W2078422487 hasConceptScore W2078422487C41008148 @default.
- W2078422487 hasConceptScore W2078422487C49040817 @default.
- W2078422487 hasConceptScore W2078422487C50644808 @default.
- W2078422487 hasConceptScore W2078422487C78434282 @default.
- W2078422487 hasConceptScore W2078422487C86803240 @default.
- W2078422487 hasConceptScore W2078422487C97126364 @default.
- W2078422487 hasIssue "1" @default.
- W2078422487 hasLocation W20784224871 @default.
- W2078422487 hasOpenAccess W2078422487 @default.
- W2078422487 hasPrimaryLocation W20784224871 @default.
- W2078422487 hasRelatedWork W142128947 @default.
- W2078422487 hasRelatedWork W1974708359 @default.
- W2078422487 hasRelatedWork W2120684500 @default.
- W2078422487 hasRelatedWork W2120909944 @default.
- W2078422487 hasRelatedWork W2242271381 @default.
- W2078422487 hasRelatedWork W2354237749 @default.
- W2078422487 hasRelatedWork W2357809648 @default.
- W2078422487 hasRelatedWork W2378555542 @default.
- W2078422487 hasRelatedWork W2758372323 @default.
- W2078422487 hasRelatedWork W2990514669 @default.
- W2078422487 hasVolume "22" @default.
- W2078422487 isParatext "false" @default.
- W2078422487 isRetracted "false" @default.
- W2078422487 magId "2078422487" @default.
- W2078422487 workType "article" @default.