Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078448162> ?p ?o ?g. }
- W2078448162 endingPage "69" @default.
- W2078448162 startingPage "58" @default.
- W2078448162 abstract "Keyword search in relational databases has been extensively studied. Given a relational database, a keyword query finds a set of interconnected tuple structures connected by foreign key references. On rdbms, a keyword query is processed in two steps, namely, candidate networks ( CN s) generation and CN s evaluation, where a CN is an sql. In common, a keyword query needs to be processed using over 10,000 sqls. There are several approaches to process a keyword query on rdbms, but there is a limit to achieve high performance on a uniprocessor architecture. In this paper, we study parallel computing keyword queries on a multicore architecture. We give three observations on keyword query computing, namely, a large number of sqls that needs to be processed, high sharing possibility among sqls, and large intermediate results with small number of final results. All make it challenging for parallel keyword queries computing. We investigate three approaches. We first study the query level parallelism, where each sql is processed by one core. We distribute the sqls into different cores based on three objectives, regarding minimizing workload skew, minimizing intercore sharing and maximizing intra-core sharing respectively. Such an approach has the potential risk of load unbalancing through accumulating errors of cost estimation. We then study the operation level parallelism, where each operation of an sql is processed by one core. All operations are processed in stages, where in each stage the costs of operations are re-estimated to reduce the accumulated error. Such operation level parallelism still has drawbacks of workload skew when large operations are involved and a large number of cores are used. Finally, we propose a new algorithm that partitions relations adaptively in order to minimize the extra cost of partitioning and at the same time reduce workload skew. We conducted extensive performance studies using two large real datasets, DBLP and IMDB , and we report the efficiency of our approaches in this paper." @default.
- W2078448162 created "2016-06-24" @default.
- W2078448162 creator A5037530341 @default.
- W2078448162 creator A5046220908 @default.
- W2078448162 creator A5075642293 @default.
- W2078448162 date "2010-09-01" @default.
- W2078448162 modified "2023-10-14" @default.
- W2078448162 title "Ten thousand SQLs" @default.
- W2078448162 cites W1980235162 @default.
- W2078448162 cites W1981585544 @default.
- W2078448162 cites W1989944922 @default.
- W2078448162 cites W1990223473 @default.
- W2078448162 cites W1991271936 @default.
- W2078448162 cites W1991859582 @default.
- W2078448162 cites W1997551838 @default.
- W2078448162 cites W2015372451 @default.
- W2078448162 cites W2015977145 @default.
- W2078448162 cites W2070032453 @default.
- W2078448162 cites W2096076988 @default.
- W2078448162 cites W2106105896 @default.
- W2078448162 cites W2107105629 @default.
- W2078448162 cites W2117461391 @default.
- W2078448162 cites W2121832290 @default.
- W2078448162 cites W2140168147 @default.
- W2078448162 cites W2151912509 @default.
- W2078448162 cites W2158237121 @default.
- W2078448162 cites W2159454657 @default.
- W2078448162 cites W2162162443 @default.
- W2078448162 cites W2162833734 @default.
- W2078448162 cites W2164858177 @default.
- W2078448162 cites W2171795609 @default.
- W2078448162 cites W2951321531 @default.
- W2078448162 doi "https://doi.org/10.14778/1920841.1920854" @default.
- W2078448162 hasPublicationYear "2010" @default.
- W2078448162 type Work @default.
- W2078448162 sameAs 2078448162 @default.
- W2078448162 citedByCount "13" @default.
- W2078448162 countsByYear W20784481622012 @default.
- W2078448162 countsByYear W20784481622013 @default.
- W2078448162 countsByYear W20784481622014 @default.
- W2078448162 countsByYear W20784481622015 @default.
- W2078448162 countsByYear W20784481622016 @default.
- W2078448162 countsByYear W20784481622019 @default.
- W2078448162 countsByYear W20784481622020 @default.
- W2078448162 countsByYear W20784481622022 @default.
- W2078448162 crossrefType "journal-article" @default.
- W2078448162 hasAuthorship W2078448162A5037530341 @default.
- W2078448162 hasAuthorship W2078448162A5046220908 @default.
- W2078448162 hasAuthorship W2078448162A5075642293 @default.
- W2078448162 hasConcept C118689300 @default.
- W2078448162 hasConcept C148840519 @default.
- W2078448162 hasConcept C157692150 @default.
- W2078448162 hasConcept C164120249 @default.
- W2078448162 hasConcept C173608175 @default.
- W2078448162 hasConcept C177264268 @default.
- W2078448162 hasConcept C192939062 @default.
- W2078448162 hasConcept C194222762 @default.
- W2078448162 hasConcept C199360897 @default.
- W2078448162 hasConcept C23123220 @default.
- W2078448162 hasConcept C24394798 @default.
- W2078448162 hasConcept C41008148 @default.
- W2078448162 hasConcept C43711488 @default.
- W2078448162 hasConcept C4822641 @default.
- W2078448162 hasConcept C510870499 @default.
- W2078448162 hasConcept C54239708 @default.
- W2078448162 hasConcept C5655090 @default.
- W2078448162 hasConcept C76155785 @default.
- W2078448162 hasConcept C77088390 @default.
- W2078448162 hasConcept C79189994 @default.
- W2078448162 hasConcept C97854310 @default.
- W2078448162 hasConcept C98199447 @default.
- W2078448162 hasConceptScore W2078448162C118689300 @default.
- W2078448162 hasConceptScore W2078448162C148840519 @default.
- W2078448162 hasConceptScore W2078448162C157692150 @default.
- W2078448162 hasConceptScore W2078448162C164120249 @default.
- W2078448162 hasConceptScore W2078448162C173608175 @default.
- W2078448162 hasConceptScore W2078448162C177264268 @default.
- W2078448162 hasConceptScore W2078448162C192939062 @default.
- W2078448162 hasConceptScore W2078448162C194222762 @default.
- W2078448162 hasConceptScore W2078448162C199360897 @default.
- W2078448162 hasConceptScore W2078448162C23123220 @default.
- W2078448162 hasConceptScore W2078448162C24394798 @default.
- W2078448162 hasConceptScore W2078448162C41008148 @default.
- W2078448162 hasConceptScore W2078448162C43711488 @default.
- W2078448162 hasConceptScore W2078448162C4822641 @default.
- W2078448162 hasConceptScore W2078448162C510870499 @default.
- W2078448162 hasConceptScore W2078448162C54239708 @default.
- W2078448162 hasConceptScore W2078448162C5655090 @default.
- W2078448162 hasConceptScore W2078448162C76155785 @default.
- W2078448162 hasConceptScore W2078448162C77088390 @default.
- W2078448162 hasConceptScore W2078448162C79189994 @default.
- W2078448162 hasConceptScore W2078448162C97854310 @default.
- W2078448162 hasConceptScore W2078448162C98199447 @default.
- W2078448162 hasIssue "1-2" @default.
- W2078448162 hasLocation W20784481621 @default.
- W2078448162 hasOpenAccess W2078448162 @default.
- W2078448162 hasPrimaryLocation W20784481621 @default.
- W2078448162 hasRelatedWork W1581079322 @default.