Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078464577> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2078464577 endingPage "19" @default.
- W2078464577 startingPage "5" @default.
- W2078464577 abstract "Financial crimes affect millions of people every year and financial institutions must employ methods to protect themselves and their customers. The use of statistical methods to address these problems faces many challenges. Financial crimes are rare events that lead to extreme class imbalances. Criminals deliberately attempt to conceal the nature of their actions and quickly change their strategies over time, resulting in class overlap and concept drift. In some cases, legal constraints and investigation delays make it impossible to actually verify suspected crimes in a timely manner, resulting in class mislabeling or unknown labels. In addition, the volume and complexity of financial data require algorithms to be not only effective, but also efficiently trained and executed. This article focuses on two important types of financial crimes: fraud and money laundering. It discusses some of the traditional statistical techniques that have been applied as well as more recent machine learning and data mining algorithms. The goal of the article is to introduce the subject and to provide a survey of broad classes of methodologies accompanied by selected illustrative examples." @default.
- W2078464577 created "2016-06-24" @default.
- W2078464577 creator A5001331464 @default.
- W2078464577 creator A5012380793 @default.
- W2078464577 creator A5040645561 @default.
- W2078464577 creator A5070196780 @default.
- W2078464577 creator A5085716366 @default.
- W2078464577 creator A5088398984 @default.
- W2078464577 date "2010-02-01" @default.
- W2078464577 modified "2023-09-27" @default.
- W2078464577 title "Statistical Methods for Fighting Financial Crimes" @default.
- W2078464577 cites W1517113043 @default.
- W2078464577 cites W1597286033 @default.
- W2078464577 cites W1602011302 @default.
- W2078464577 cites W1651356620 @default.
- W2078464577 cites W1709414455 @default.
- W2078464577 cites W1817561967 @default.
- W2078464577 cites W1985624473 @default.
- W2078464577 cites W1988790447 @default.
- W2078464577 cites W1988814833 @default.
- W2078464577 cites W1990079212 @default.
- W2078464577 cites W2017337590 @default.
- W2078464577 cites W2037768235 @default.
- W2078464577 cites W2048231652 @default.
- W2078464577 cites W2089967664 @default.
- W2078464577 cites W2090824518 @default.
- W2078464577 cites W2100805904 @default.
- W2078464577 cites W2103441516 @default.
- W2078464577 cites W2123998733 @default.
- W2078464577 cites W2128420091 @default.
- W2078464577 cites W2148143831 @default.
- W2078464577 cites W2148740744 @default.
- W2078464577 cites W2153476503 @default.
- W2078464577 cites W2160150610 @default.
- W2078464577 cites W2167374789 @default.
- W2078464577 cites W2911964244 @default.
- W2078464577 cites W4237835726 @default.
- W2078464577 cites W4256540010 @default.
- W2078464577 doi "https://doi.org/10.1198/tech.2010.07032" @default.
- W2078464577 hasPublicationYear "2010" @default.
- W2078464577 type Work @default.
- W2078464577 sameAs 2078464577 @default.
- W2078464577 citedByCount "69" @default.
- W2078464577 countsByYear W20784645772012 @default.
- W2078464577 countsByYear W20784645772013 @default.
- W2078464577 countsByYear W20784645772014 @default.
- W2078464577 countsByYear W20784645772015 @default.
- W2078464577 countsByYear W20784645772016 @default.
- W2078464577 countsByYear W20784645772017 @default.
- W2078464577 countsByYear W20784645772018 @default.
- W2078464577 countsByYear W20784645772019 @default.
- W2078464577 countsByYear W20784645772020 @default.
- W2078464577 countsByYear W20784645772021 @default.
- W2078464577 countsByYear W20784645772022 @default.
- W2078464577 countsByYear W20784645772023 @default.
- W2078464577 crossrefType "journal-article" @default.
- W2078464577 hasAuthorship W2078464577A5001331464 @default.
- W2078464577 hasAuthorship W2078464577A5012380793 @default.
- W2078464577 hasAuthorship W2078464577A5040645561 @default.
- W2078464577 hasAuthorship W2078464577A5070196780 @default.
- W2078464577 hasAuthorship W2078464577A5085716366 @default.
- W2078464577 hasAuthorship W2078464577A5088398984 @default.
- W2078464577 hasConcept C10138342 @default.
- W2078464577 hasConcept C144133560 @default.
- W2078464577 hasConcept C154945302 @default.
- W2078464577 hasConcept C2777212361 @default.
- W2078464577 hasConcept C2780005421 @default.
- W2078464577 hasConcept C41008148 @default.
- W2078464577 hasConceptScore W2078464577C10138342 @default.
- W2078464577 hasConceptScore W2078464577C144133560 @default.
- W2078464577 hasConceptScore W2078464577C154945302 @default.
- W2078464577 hasConceptScore W2078464577C2777212361 @default.
- W2078464577 hasConceptScore W2078464577C2780005421 @default.
- W2078464577 hasConceptScore W2078464577C41008148 @default.
- W2078464577 hasIssue "1" @default.
- W2078464577 hasLocation W20784645771 @default.
- W2078464577 hasOpenAccess W2078464577 @default.
- W2078464577 hasPrimaryLocation W20784645771 @default.
- W2078464577 hasRelatedWork W2083631268 @default.
- W2078464577 hasRelatedWork W2372895414 @default.
- W2078464577 hasRelatedWork W2596568874 @default.
- W2078464577 hasRelatedWork W2747950675 @default.
- W2078464577 hasRelatedWork W4244095706 @default.
- W2078464577 hasRelatedWork W4300409011 @default.
- W2078464577 hasRelatedWork W2597676282 @default.
- W2078464577 hasRelatedWork W309234703 @default.
- W2078464577 hasRelatedWork W3125081189 @default.
- W2078464577 hasRelatedWork W3207884277 @default.
- W2078464577 hasVolume "52" @default.
- W2078464577 isParatext "false" @default.
- W2078464577 isRetracted "false" @default.
- W2078464577 magId "2078464577" @default.
- W2078464577 workType "article" @default.