Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078474967> ?p ?o ?g. }
- W2078474967 abstract "Ground-based magnetic surveying is a common geophysical method to explore near-surface environments in a non-destructive manner. In many typical applications (such as archaeological prospection), the resulting anomaly maps are often characterized by low signal-to-noise ratios and, thus, the suppression of noise is a key step in data processing. Here, we propose the steering kernel regression (SKR) method to denoise magnetic data sets. SKR has been recently developed to suppress random noise in images and video sequences. The core of the method is the steering kernel function which represents a robust estimate of local image structure. Using such a kernel within an iterative regression based denoising framework, helps to minimize image blurring and to preserve the underlying structures such as edges and corners. Because such filter characteristics are desirable for random noise attenuation in potential field data sets, we apply the SKR method for processing high-resolution ground-based magnetic data as they are typically collected in archaeological applications. We test and evaluate the SKR method using synthetic and field data examples and also compare it to more commonly employed denoising strategies relying, for example, on fixed filter masks (e.g., Gaussian filters). Our results show that the SKR method is successful in removing random and acquisition related noise present in our data. Concurrently, it preserves the local image structure including the amplitudes of anomalies. As demonstrated by derivative based transformations, the mentioned filter characteristics significantly impact subsequent processing steps and, therefore, result in an improved analysis and interpretation of magnetic data. Thus, the method can be considered as a promising and novel approach for denoising ground-based magnetic data." @default.
- W2078474967 created "2016-06-24" @default.
- W2078474967 creator A5007825284 @default.
- W2078474967 creator A5059732218 @default.
- W2078474967 date "2014-06-01" @default.
- W2078474967 modified "2023-09-27" @default.
- W2078474967 title "Denoising magnetic data using steering kernel regression" @default.
- W2078474967 cites W1549543608 @default.
- W2078474967 cites W1990716449 @default.
- W2078474967 cites W1993652248 @default.
- W2078474967 cites W1998419211 @default.
- W2078474967 cites W2000981844 @default.
- W2078474967 cites W2006262236 @default.
- W2078474967 cites W2007429812 @default.
- W2078474967 cites W2027447908 @default.
- W2078474967 cites W2044378319 @default.
- W2078474967 cites W2048388624 @default.
- W2078474967 cites W2051487167 @default.
- W2078474967 cites W2056707276 @default.
- W2078474967 cites W2066153650 @default.
- W2078474967 cites W2068358289 @default.
- W2078474967 cites W2069433376 @default.
- W2078474967 cites W2084890123 @default.
- W2078474967 cites W2089901610 @default.
- W2078474967 cites W2104974403 @default.
- W2078474967 cites W2106168839 @default.
- W2078474967 cites W2122975106 @default.
- W2078474967 cites W2128331993 @default.
- W2078474967 cites W2136396015 @default.
- W2078474967 cites W2144709937 @default.
- W2078474967 cites W2170482959 @default.
- W2078474967 cites W2479390345 @default.
- W2078474967 cites W4206419526 @default.
- W2078474967 doi "https://doi.org/10.3997/1873-0604.2014038" @default.
- W2078474967 hasPublicationYear "2014" @default.
- W2078474967 type Work @default.
- W2078474967 sameAs 2078474967 @default.
- W2078474967 citedByCount "2" @default.
- W2078474967 countsByYear W20784749672016 @default.
- W2078474967 countsByYear W20784749672018 @default.
- W2078474967 crossrefType "journal-article" @default.
- W2078474967 hasAuthorship W2078474967A5007825284 @default.
- W2078474967 hasAuthorship W2078474967A5059732218 @default.
- W2078474967 hasConcept C105795698 @default.
- W2078474967 hasConcept C106131492 @default.
- W2078474967 hasConcept C111919701 @default.
- W2078474967 hasConcept C11413529 @default.
- W2078474967 hasConcept C114614502 @default.
- W2078474967 hasConcept C115961682 @default.
- W2078474967 hasConcept C127313418 @default.
- W2078474967 hasConcept C138827492 @default.
- W2078474967 hasConcept C153180895 @default.
- W2078474967 hasConcept C154945302 @default.
- W2078474967 hasConcept C163294075 @default.
- W2078474967 hasConcept C200695384 @default.
- W2078474967 hasConcept C31972630 @default.
- W2078474967 hasConcept C33923547 @default.
- W2078474967 hasConcept C41008148 @default.
- W2078474967 hasConcept C74193536 @default.
- W2078474967 hasConcept C83546350 @default.
- W2078474967 hasConcept C99498987 @default.
- W2078474967 hasConceptScore W2078474967C105795698 @default.
- W2078474967 hasConceptScore W2078474967C106131492 @default.
- W2078474967 hasConceptScore W2078474967C111919701 @default.
- W2078474967 hasConceptScore W2078474967C11413529 @default.
- W2078474967 hasConceptScore W2078474967C114614502 @default.
- W2078474967 hasConceptScore W2078474967C115961682 @default.
- W2078474967 hasConceptScore W2078474967C127313418 @default.
- W2078474967 hasConceptScore W2078474967C138827492 @default.
- W2078474967 hasConceptScore W2078474967C153180895 @default.
- W2078474967 hasConceptScore W2078474967C154945302 @default.
- W2078474967 hasConceptScore W2078474967C163294075 @default.
- W2078474967 hasConceptScore W2078474967C200695384 @default.
- W2078474967 hasConceptScore W2078474967C31972630 @default.
- W2078474967 hasConceptScore W2078474967C33923547 @default.
- W2078474967 hasConceptScore W2078474967C41008148 @default.
- W2078474967 hasConceptScore W2078474967C74193536 @default.
- W2078474967 hasConceptScore W2078474967C83546350 @default.
- W2078474967 hasConceptScore W2078474967C99498987 @default.
- W2078474967 hasLocation W20784749671 @default.
- W2078474967 hasOpenAccess W2078474967 @default.
- W2078474967 hasPrimaryLocation W20784749671 @default.
- W2078474967 hasRelatedWork W19771135 @default.
- W2078474967 hasRelatedWork W2077205830 @default.
- W2078474967 hasRelatedWork W2109329613 @default.
- W2078474967 hasRelatedWork W2118663732 @default.
- W2078474967 hasRelatedWork W2425059356 @default.
- W2078474967 hasRelatedWork W2535879824 @default.
- W2078474967 hasRelatedWork W2563204229 @default.
- W2078474967 hasRelatedWork W2568381517 @default.
- W2078474967 hasRelatedWork W2568393483 @default.
- W2078474967 hasRelatedWork W2618266052 @default.
- W2078474967 hasRelatedWork W2738886101 @default.
- W2078474967 hasRelatedWork W2771755380 @default.
- W2078474967 hasRelatedWork W2800722299 @default.
- W2078474967 hasRelatedWork W2890435611 @default.
- W2078474967 hasRelatedWork W3038946738 @default.
- W2078474967 hasRelatedWork W3132300710 @default.
- W2078474967 hasRelatedWork W3197500846 @default.
- W2078474967 hasRelatedWork W3213867703 @default.