Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078482926> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2078482926 abstract "Image segmentation plays an important role in medical image analysis and visualization since it greatly enhances the clinical diagnosis. Although many algorithms have been proposed, it is challenging to achieve an automatic clinical organ segmentation which requires speed and robustness. Automatically segmenting cardiac Magnetic Resonance Imaging (MRI) image is extremely challenging due to the artifacts of cardiac motion and characteristics of MRI. Moreover many of the existing algorithms are specific to a particular view of cardiac MRI images. We proposed a generic view-independent, learning-based method to automatically segment cardiac MRI images, which uses machine learning techniques and the geometric shape information. A main feature of our contribution is the fact that the proposed algorithm can use a training set containing a mix of various views and is able to successfully segment any given views. The proposed method consists of four stages. First, we partition the input image into a number of image regions based on their intensity characteristics. Then, we calculate the pre-selected feature descriptions for each generated region and use a trained classi.er to learn the conditional probabilities for every pixel based on the calculated features. In this paper, we use the Support Vector Machine (SVM) to train our classifier. The learned conditional probabilities of every pixel are then fed into an energy function to segment the input image. We optimize our energy function with graph cuts. Finally, domain knowledge is applied to verify the segmentation. Experimental results show that this method is very efficient and robust with respect to image views, slices and motion phases. The method also has the potential to be imaging modality independent as the proposed algorithm is not specific to a particular imaging modality." @default.
- W2078482926 created "2016-06-24" @default.
- W2078482926 creator A5000166507 @default.
- W2078482926 creator A5002096737 @default.
- W2078482926 creator A5031112158 @default.
- W2078482926 creator A5049647213 @default.
- W2078482926 creator A5082340306 @default.
- W2078482926 date "2007-03-08" @default.
- W2078482926 modified "2023-09-23" @default.
- W2078482926 title "A learning-based automatic clinical organ segmentation in medical images" @default.
- W2078482926 cites W1524460347 @default.
- W2078482926 cites W1561847614 @default.
- W2078482926 cites W1578038714 @default.
- W2078482926 cites W1999478155 @default.
- W2078482926 cites W2113137767 @default.
- W2078482926 cites W2125310925 @default.
- W2078482926 cites W2133059825 @default.
- W2078482926 cites W2143516773 @default.
- W2078482926 cites W2153635508 @default.
- W2078482926 cites W2156909104 @default.
- W2078482926 cites W2165480350 @default.
- W2078482926 cites W2169527406 @default.
- W2078482926 cites W2169551590 @default.
- W2078482926 doi "https://doi.org/10.1117/12.709433" @default.
- W2078482926 hasPublicationYear "2007" @default.
- W2078482926 type Work @default.
- W2078482926 sameAs 2078482926 @default.
- W2078482926 citedByCount "0" @default.
- W2078482926 crossrefType "proceedings-article" @default.
- W2078482926 hasAuthorship W2078482926A5000166507 @default.
- W2078482926 hasAuthorship W2078482926A5002096737 @default.
- W2078482926 hasAuthorship W2078482926A5031112158 @default.
- W2078482926 hasAuthorship W2078482926A5049647213 @default.
- W2078482926 hasAuthorship W2078482926A5082340306 @default.
- W2078482926 hasConcept C104317684 @default.
- W2078482926 hasConcept C12267149 @default.
- W2078482926 hasConcept C124504099 @default.
- W2078482926 hasConcept C153180895 @default.
- W2078482926 hasConcept C154945302 @default.
- W2078482926 hasConcept C160633673 @default.
- W2078482926 hasConcept C185592680 @default.
- W2078482926 hasConcept C25694479 @default.
- W2078482926 hasConcept C31601959 @default.
- W2078482926 hasConcept C31972630 @default.
- W2078482926 hasConcept C36464697 @default.
- W2078482926 hasConcept C41008148 @default.
- W2078482926 hasConcept C5134670 @default.
- W2078482926 hasConcept C55493867 @default.
- W2078482926 hasConcept C63479239 @default.
- W2078482926 hasConcept C65885262 @default.
- W2078482926 hasConcept C89600930 @default.
- W2078482926 hasConceptScore W2078482926C104317684 @default.
- W2078482926 hasConceptScore W2078482926C12267149 @default.
- W2078482926 hasConceptScore W2078482926C124504099 @default.
- W2078482926 hasConceptScore W2078482926C153180895 @default.
- W2078482926 hasConceptScore W2078482926C154945302 @default.
- W2078482926 hasConceptScore W2078482926C160633673 @default.
- W2078482926 hasConceptScore W2078482926C185592680 @default.
- W2078482926 hasConceptScore W2078482926C25694479 @default.
- W2078482926 hasConceptScore W2078482926C31601959 @default.
- W2078482926 hasConceptScore W2078482926C31972630 @default.
- W2078482926 hasConceptScore W2078482926C36464697 @default.
- W2078482926 hasConceptScore W2078482926C41008148 @default.
- W2078482926 hasConceptScore W2078482926C5134670 @default.
- W2078482926 hasConceptScore W2078482926C55493867 @default.
- W2078482926 hasConceptScore W2078482926C63479239 @default.
- W2078482926 hasConceptScore W2078482926C65885262 @default.
- W2078482926 hasConceptScore W2078482926C89600930 @default.
- W2078482926 hasLocation W20784829261 @default.
- W2078482926 hasOpenAccess W2078482926 @default.
- W2078482926 hasPrimaryLocation W20784829261 @default.
- W2078482926 hasRelatedWork W1522908000 @default.
- W2078482926 hasRelatedWork W1669643531 @default.
- W2078482926 hasRelatedWork W2069711651 @default.
- W2078482926 hasRelatedWork W2110230079 @default.
- W2078482926 hasRelatedWork W2117664411 @default.
- W2078482926 hasRelatedWork W2117933325 @default.
- W2078482926 hasRelatedWork W2171698391 @default.
- W2078482926 hasRelatedWork W2540054861 @default.
- W2078482926 hasRelatedWork W2558375057 @default.
- W2078482926 hasRelatedWork W1967061043 @default.
- W2078482926 isParatext "false" @default.
- W2078482926 isRetracted "false" @default.
- W2078482926 magId "2078482926" @default.
- W2078482926 workType "article" @default.