Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078483723> ?p ?o ?g. }
- W2078483723 endingPage "3370" @default.
- W2078483723 startingPage "3347" @default.
- W2078483723 abstract "Abstract Previously we have detailed an application of the generalized likelihood uncertainty estimation (GLUE) procedure to estimate spatially distributed uncertainty in models conditioned against binary pattern data contained in flood inundation maps. This method was applied to two sites where a single consistent synoptic image of inundation extent was available to test the simulation performance of the method. In this paper, we extend this to examine the predictive performance of the method for a reach of the River Severn, west‐central England. Uniquely for this reach, consistent inundation images of two major floods have been acquired from spaceborne synthetic aperture radars, as well as a high‐resolution digital elevation model derived using laser altimetry. These data thus allow rigorous split sample testing of the previous GLUE application. To achieve this, Monte Carlo analyses of parameter uncertainty within the GLUE framework are conducted for a typical hydraulic model applied to each flood event. The best 10% of parameter sets identified in each analysis are then used to map uncertainty in flood extent predictions using the method previously proposed for both an independent validation data set and a design flood. Finally, methods for combining the likelihood information derived from each Monte Carlo ensemble are examined to determine whether this has the potential to reduce uncertainty in spatially distributed measures of flood risk for a design flood. The results show that for this reach and these events, the method previously established is able to produce sharply defined flood risk maps that compare well with observed inundation extent. More generally, we show that even single, poor‐quality inundation extent images are useful in constraining hydraulic model calibrations and that values of effective friction parameters are broadly stationary between the two events simulated, most probably reflecting their similar hydraulics. Copyright © 2004 John Wiley & Sons, Ltd." @default.
- W2078483723 created "2016-06-24" @default.
- W2078483723 creator A5024045970 @default.
- W2078483723 creator A5030563324 @default.
- W2078483723 creator A5041770872 @default.
- W2078483723 creator A5056917961 @default.
- W2078483723 date "2004-08-23" @default.
- W2078483723 modified "2023-10-14" @default.
- W2078483723 title "Bayesian updating of flood inundation likelihoods conditioned on flood extent data" @default.
- W2078483723 cites W1886162980 @default.
- W2078483723 cites W1965776712 @default.
- W2078483723 cites W1991921673 @default.
- W2078483723 cites W2022410192 @default.
- W2078483723 cites W2033117719 @default.
- W2078483723 cites W2046390231 @default.
- W2078483723 cites W2068015846 @default.
- W2078483723 cites W2070086504 @default.
- W2078483723 cites W2072852485 @default.
- W2078483723 cites W2079433425 @default.
- W2078483723 cites W2085845644 @default.
- W2078483723 cites W2089594470 @default.
- W2078483723 cites W2101044141 @default.
- W2078483723 cites W2113303717 @default.
- W2078483723 cites W2118805595 @default.
- W2078483723 cites W2121542944 @default.
- W2078483723 cites W2124738823 @default.
- W2078483723 cites W2145245779 @default.
- W2078483723 cites W2166963804 @default.
- W2078483723 cites W4241210177 @default.
- W2078483723 doi "https://doi.org/10.1002/hyp.1499" @default.
- W2078483723 hasPublicationYear "2004" @default.
- W2078483723 type Work @default.
- W2078483723 sameAs 2078483723 @default.
- W2078483723 citedByCount "130" @default.
- W2078483723 countsByYear W20784837232012 @default.
- W2078483723 countsByYear W20784837232013 @default.
- W2078483723 countsByYear W20784837232014 @default.
- W2078483723 countsByYear W20784837232015 @default.
- W2078483723 countsByYear W20784837232016 @default.
- W2078483723 countsByYear W20784837232017 @default.
- W2078483723 countsByYear W20784837232018 @default.
- W2078483723 countsByYear W20784837232019 @default.
- W2078483723 countsByYear W20784837232020 @default.
- W2078483723 countsByYear W20784837232021 @default.
- W2078483723 countsByYear W20784837232022 @default.
- W2078483723 countsByYear W20784837232023 @default.
- W2078483723 crossrefType "journal-article" @default.
- W2078483723 hasAuthorship W2078483723A5024045970 @default.
- W2078483723 hasAuthorship W2078483723A5030563324 @default.
- W2078483723 hasAuthorship W2078483723A5041770872 @default.
- W2078483723 hasAuthorship W2078483723A5056917961 @default.
- W2078483723 hasConcept C105795698 @default.
- W2078483723 hasConcept C107673813 @default.
- W2078483723 hasConcept C124101348 @default.
- W2078483723 hasConcept C127313418 @default.
- W2078483723 hasConcept C127413603 @default.
- W2078483723 hasConcept C154945302 @default.
- W2078483723 hasConcept C166957645 @default.
- W2078483723 hasConcept C181843262 @default.
- W2078483723 hasConcept C187320778 @default.
- W2078483723 hasConcept C19499675 @default.
- W2078483723 hasConcept C205649164 @default.
- W2078483723 hasConcept C2524010 @default.
- W2078483723 hasConcept C2779190172 @default.
- W2078483723 hasConcept C2779937294 @default.
- W2078483723 hasConcept C33923547 @default.
- W2078483723 hasConcept C37054046 @default.
- W2078483723 hasConcept C39432304 @default.
- W2078483723 hasConcept C41008148 @default.
- W2078483723 hasConcept C48372109 @default.
- W2078483723 hasConcept C58489278 @default.
- W2078483723 hasConcept C62649853 @default.
- W2078483723 hasConcept C74256435 @default.
- W2078483723 hasConcept C76886044 @default.
- W2078483723 hasConcept C78519656 @default.
- W2078483723 hasConcept C94375191 @default.
- W2078483723 hasConceptScore W2078483723C105795698 @default.
- W2078483723 hasConceptScore W2078483723C107673813 @default.
- W2078483723 hasConceptScore W2078483723C124101348 @default.
- W2078483723 hasConceptScore W2078483723C127313418 @default.
- W2078483723 hasConceptScore W2078483723C127413603 @default.
- W2078483723 hasConceptScore W2078483723C154945302 @default.
- W2078483723 hasConceptScore W2078483723C166957645 @default.
- W2078483723 hasConceptScore W2078483723C181843262 @default.
- W2078483723 hasConceptScore W2078483723C187320778 @default.
- W2078483723 hasConceptScore W2078483723C19499675 @default.
- W2078483723 hasConceptScore W2078483723C205649164 @default.
- W2078483723 hasConceptScore W2078483723C2524010 @default.
- W2078483723 hasConceptScore W2078483723C2779190172 @default.
- W2078483723 hasConceptScore W2078483723C2779937294 @default.
- W2078483723 hasConceptScore W2078483723C33923547 @default.
- W2078483723 hasConceptScore W2078483723C37054046 @default.
- W2078483723 hasConceptScore W2078483723C39432304 @default.
- W2078483723 hasConceptScore W2078483723C41008148 @default.
- W2078483723 hasConceptScore W2078483723C48372109 @default.
- W2078483723 hasConceptScore W2078483723C58489278 @default.
- W2078483723 hasConceptScore W2078483723C62649853 @default.
- W2078483723 hasConceptScore W2078483723C74256435 @default.