Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078490018> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2078490018 abstract "We are investigating the use of texture features to distinguish abnormal from normal tissue for computer-aided diagnosis algorithms. In this study, the improvement in the accuracy of classifying masses from normal breast tissue on digitized mammograms by using local texture features was evaluated. One hundred and sixty-eight mammograms were randomly selected from patient files and digitized with a laser scanner at a pixel size of 100 micrometers . Four different regions of interest (ROIs), each of 256 X 256 pixels, were selected manually from each of the digitized mammograms. One of the four ROIs contained a biopsy-proven mass and the other three contained normal parenchyma including dense, mixed dense/fatty, and fatty tissues. The mass ROIs were randomly and equally divided into a training and a test group along with corresponding normal ROIs from the same film. The wavelet transform was used to decompose the ROIs into several scales. Global multiresolution texture features were calculated from the spatial gray level dependence matrices of the low-pass wavelet coefficients up to a certain scale and then at variable distances between the pixel pairs. Texture features and their differences in suspicious object sub-region and its peripheral sub-regions of the ROIs were also calculated to form a local texture feature space. Stepwise linear discriminant analysis was used to select effective features from the combined global-local feature space to maximize the separation of mass and normal tissue for all ROIs. Receiver operating characteristic (ROC) analysis was used to evaluate the classification accuracy and its improvement using features from global and local feature spaces. Using the global multiresolution feature space alone, it was found that the texture features at large pixel distances were important for the classification task. Using local features only, the classification accuracy was comparable to that of the global features. With the combined global and local feature spaces, the average area, A<SUB>z</SUB>, under the ROC curve reached 0.91 and 0.90 for the training and test groups, respectively. The improvement was statistically significant. The results demonstrate that a linear discriminant classifier using the combination of global multiresolution texture features and the local texture features can effectively classify masses from normal tissue on mammograms." @default.
- W2078490018 created "2016-06-24" @default.
- W2078490018 creator A5006593300 @default.
- W2078490018 creator A5011008920 @default.
- W2078490018 creator A5046596490 @default.
- W2078490018 creator A5065660850 @default.
- W2078490018 creator A5073468417 @default.
- W2078490018 creator A5073769753 @default.
- W2078490018 creator A5086416122 @default.
- W2078490018 date "1995-05-12" @default.
- W2078490018 modified "2023-09-23" @default.
- W2078490018 title "<title>Multiresolution texture analysis for classification of mass and normal breast tissue on digital mammograms</title>" @default.
- W2078490018 doi "https://doi.org/10.1117/12.208733" @default.
- W2078490018 hasPublicationYear "1995" @default.
- W2078490018 type Work @default.
- W2078490018 sameAs 2078490018 @default.
- W2078490018 citedByCount "6" @default.
- W2078490018 countsByYear W20784900182013 @default.
- W2078490018 crossrefType "proceedings-article" @default.
- W2078490018 hasAuthorship W2078490018A5006593300 @default.
- W2078490018 hasAuthorship W2078490018A5011008920 @default.
- W2078490018 hasAuthorship W2078490018A5046596490 @default.
- W2078490018 hasAuthorship W2078490018A5065660850 @default.
- W2078490018 hasAuthorship W2078490018A5073468417 @default.
- W2078490018 hasAuthorship W2078490018A5073769753 @default.
- W2078490018 hasAuthorship W2078490018A5086416122 @default.
- W2078490018 hasConcept C105795698 @default.
- W2078490018 hasConcept C115961682 @default.
- W2078490018 hasConcept C153180895 @default.
- W2078490018 hasConcept C154945302 @default.
- W2078490018 hasConcept C160633673 @default.
- W2078490018 hasConcept C196216189 @default.
- W2078490018 hasConcept C2779549770 @default.
- W2078490018 hasConcept C2781195486 @default.
- W2078490018 hasConcept C31972630 @default.
- W2078490018 hasConcept C33923547 @default.
- W2078490018 hasConcept C41008148 @default.
- W2078490018 hasConcept C47432892 @default.
- W2078490018 hasConcept C58471807 @default.
- W2078490018 hasConcept C63099799 @default.
- W2078490018 hasConcept C69738355 @default.
- W2078490018 hasConcept C83665646 @default.
- W2078490018 hasConcept C9417928 @default.
- W2078490018 hasConceptScore W2078490018C105795698 @default.
- W2078490018 hasConceptScore W2078490018C115961682 @default.
- W2078490018 hasConceptScore W2078490018C153180895 @default.
- W2078490018 hasConceptScore W2078490018C154945302 @default.
- W2078490018 hasConceptScore W2078490018C160633673 @default.
- W2078490018 hasConceptScore W2078490018C196216189 @default.
- W2078490018 hasConceptScore W2078490018C2779549770 @default.
- W2078490018 hasConceptScore W2078490018C2781195486 @default.
- W2078490018 hasConceptScore W2078490018C31972630 @default.
- W2078490018 hasConceptScore W2078490018C33923547 @default.
- W2078490018 hasConceptScore W2078490018C41008148 @default.
- W2078490018 hasConceptScore W2078490018C47432892 @default.
- W2078490018 hasConceptScore W2078490018C58471807 @default.
- W2078490018 hasConceptScore W2078490018C63099799 @default.
- W2078490018 hasConceptScore W2078490018C69738355 @default.
- W2078490018 hasConceptScore W2078490018C83665646 @default.
- W2078490018 hasConceptScore W2078490018C9417928 @default.
- W2078490018 hasLocation W20784900181 @default.
- W2078490018 hasOpenAccess W2078490018 @default.
- W2078490018 hasPrimaryLocation W20784900181 @default.
- W2078490018 hasRelatedWork W1877109617 @default.
- W2078490018 hasRelatedWork W2059331675 @default.
- W2078490018 hasRelatedWork W2136395628 @default.
- W2078490018 hasRelatedWork W2136476704 @default.
- W2078490018 hasRelatedWork W2149249189 @default.
- W2078490018 hasRelatedWork W2154963187 @default.
- W2078490018 hasRelatedWork W2165984708 @default.
- W2078490018 hasRelatedWork W2609035398 @default.
- W2078490018 hasRelatedWork W49698436 @default.
- W2078490018 hasRelatedWork W2106595108 @default.
- W2078490018 isParatext "false" @default.
- W2078490018 isRetracted "false" @default.
- W2078490018 magId "2078490018" @default.
- W2078490018 workType "article" @default.