Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078491101> ?p ?o ?g. }
- W2078491101 endingPage "1750" @default.
- W2078491101 startingPage "1725" @default.
- W2078491101 abstract "We discuss several aspects of the mathematical foundations of the nonlinear black-box identification problem. We shall see that the quality of the identification procedure is always a result of a certain trade-off between the expressive power of the model we try to identify (the larger the number of parameters used to describe the model, the more flexible is the approximation), and the stochastic error (which is proportional to the number of parameters). A consequence of this trade-off is the simple fact that a good approximation technique can be the basis of a good identification algorithm. From this point of view, we consider different approximation methods, and pay special attention to spatially adaptive approximants. We introduce wavelet and ‘neuron’ approximations, and show that they are spatially adaptive. Then we apply the acquired approximation experience to estimation problems. Finally, we consider some implications of these theoretical developments for the practically implemented versions of the ‘spatially adaptive’ algorithms." @default.
- W2078491101 created "2016-06-24" @default.
- W2078491101 creator A5006586061 @default.
- W2078491101 creator A5016897258 @default.
- W2078491101 creator A5039659947 @default.
- W2078491101 creator A5047606099 @default.
- W2078491101 creator A5059841305 @default.
- W2078491101 creator A5075584449 @default.
- W2078491101 creator A5078405221 @default.
- W2078491101 date "1995-12-01" @default.
- W2078491101 modified "2023-10-11" @default.
- W2078491101 title "Nonlinear black-box models in system identification: Mathematical foundations" @default.
- W2078491101 cites W1969705022 @default.
- W2078491101 cites W1971713783 @default.
- W2078491101 cites W1976834773 @default.
- W2078491101 cites W1990351156 @default.
- W2078491101 cites W2001213989 @default.
- W2078491101 cites W2011693672 @default.
- W2078491101 cites W2014268383 @default.
- W2078491101 cites W2024983310 @default.
- W2078491101 cites W2033914841 @default.
- W2078491101 cites W2034106324 @default.
- W2078491101 cites W2037600591 @default.
- W2078491101 cites W2038845890 @default.
- W2078491101 cites W2040135606 @default.
- W2078491101 cites W2046031028 @default.
- W2078491101 cites W2056481711 @default.
- W2078491101 cites W2058802470 @default.
- W2078491101 cites W2072508748 @default.
- W2078491101 cites W2074619954 @default.
- W2078491101 cites W2091886411 @default.
- W2078491101 cites W2102201073 @default.
- W2078491101 cites W2112027492 @default.
- W2078491101 cites W2118020555 @default.
- W2078491101 cites W2127390588 @default.
- W2078491101 cites W2166116275 @default.
- W2078491101 cites W4213021285 @default.
- W2078491101 cites W4238957295 @default.
- W2078491101 cites W4243797702 @default.
- W2078491101 cites W4244087046 @default.
- W2078491101 doi "https://doi.org/10.1016/0005-1098(95)00119-1" @default.
- W2078491101 hasPublicationYear "1995" @default.
- W2078491101 type Work @default.
- W2078491101 sameAs 2078491101 @default.
- W2078491101 citedByCount "352" @default.
- W2078491101 countsByYear W20784911012012 @default.
- W2078491101 countsByYear W20784911012013 @default.
- W2078491101 countsByYear W20784911012014 @default.
- W2078491101 countsByYear W20784911012015 @default.
- W2078491101 countsByYear W20784911012016 @default.
- W2078491101 countsByYear W20784911012017 @default.
- W2078491101 countsByYear W20784911012018 @default.
- W2078491101 countsByYear W20784911012019 @default.
- W2078491101 countsByYear W20784911012020 @default.
- W2078491101 countsByYear W20784911012021 @default.
- W2078491101 countsByYear W20784911012022 @default.
- W2078491101 crossrefType "journal-article" @default.
- W2078491101 hasAuthorship W2078491101A5006586061 @default.
- W2078491101 hasAuthorship W2078491101A5016897258 @default.
- W2078491101 hasAuthorship W2078491101A5039659947 @default.
- W2078491101 hasAuthorship W2078491101A5047606099 @default.
- W2078491101 hasAuthorship W2078491101A5059841305 @default.
- W2078491101 hasAuthorship W2078491101A5075584449 @default.
- W2078491101 hasAuthorship W2078491101A5078405221 @default.
- W2078491101 hasConcept C111472728 @default.
- W2078491101 hasConcept C11413529 @default.
- W2078491101 hasConcept C116834253 @default.
- W2078491101 hasConcept C119247159 @default.
- W2078491101 hasConcept C121332964 @default.
- W2078491101 hasConcept C124101348 @default.
- W2078491101 hasConcept C126255220 @default.
- W2078491101 hasConcept C138885662 @default.
- W2078491101 hasConcept C154945302 @default.
- W2078491101 hasConcept C158622935 @default.
- W2078491101 hasConcept C2524010 @default.
- W2078491101 hasConcept C26517878 @default.
- W2078491101 hasConcept C2780009758 @default.
- W2078491101 hasConcept C2780586882 @default.
- W2078491101 hasConcept C28719098 @default.
- W2078491101 hasConcept C28826006 @default.
- W2078491101 hasConcept C33923547 @default.
- W2078491101 hasConcept C38652104 @default.
- W2078491101 hasConcept C41008148 @default.
- W2078491101 hasConcept C55479107 @default.
- W2078491101 hasConcept C59822182 @default.
- W2078491101 hasConcept C62520636 @default.
- W2078491101 hasConcept C86803240 @default.
- W2078491101 hasConcept C94966114 @default.
- W2078491101 hasConceptScore W2078491101C111472728 @default.
- W2078491101 hasConceptScore W2078491101C11413529 @default.
- W2078491101 hasConceptScore W2078491101C116834253 @default.
- W2078491101 hasConceptScore W2078491101C119247159 @default.
- W2078491101 hasConceptScore W2078491101C121332964 @default.
- W2078491101 hasConceptScore W2078491101C124101348 @default.
- W2078491101 hasConceptScore W2078491101C126255220 @default.
- W2078491101 hasConceptScore W2078491101C138885662 @default.
- W2078491101 hasConceptScore W2078491101C154945302 @default.
- W2078491101 hasConceptScore W2078491101C158622935 @default.