Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078495963> ?p ?o ?g. }
- W2078495963 endingPage "2865" @default.
- W2078495963 startingPage "2852" @default.
- W2078495963 abstract "Recently, multiple kernel learning (MKL) methods have been developed to improve the flexibility of kernel-based learning machine. The MKL methods generally focus on determining key kernels to be preserved and their significance in optimal kernel combination. Unfortunately, computational demand of finding the optimal combination is prohibitive when the number of training samples and kernels increase rapidly, particularly for hyperspectral remote sensing data. In this paper, we address the MKL for classification in hyperspectral images by extracting the most variation from the space spanned by multiple kernels and propose a representative MKL (RMKL) algorithm. The core idea embedded in the algorithm is to determine the kernels to be preserved and their weights according to statistical significance instead of time-consuming search for optimal kernel combination. The noticeable merits of RMKL consist that it greatly reduces the computational load for searching optimal combination of basis kernels and has no limitation from strict selection of basis kernels like most MKL algorithms do; meanwhile, RMKL keeps excellent properties of MKL in terms of both good classification accuracy and interpretability. Experiments are conducted on different real hyperspectral data, and the corresponding experimental results show that RMKL algorithm provides the best performances to date among several the state-of-the-art algorithms while demonstrating satisfactory computational efficiency." @default.
- W2078495963 created "2016-06-24" @default.
- W2078495963 creator A5002688054 @default.
- W2078495963 creator A5013038112 @default.
- W2078495963 creator A5022959928 @default.
- W2078495963 creator A5034748006 @default.
- W2078495963 creator A5076623908 @default.
- W2078495963 creator A5082117229 @default.
- W2078495963 date "2012-07-01" @default.
- W2078495963 modified "2023-10-18" @default.
- W2078495963 title "Representative Multiple Kernel Learning for Classification in Hyperspectral Imagery" @default.
- W2078495963 cites W1977066218 @default.
- W2078495963 cites W1992961908 @default.
- W2078495963 cites W2014158063 @default.
- W2078495963 cites W2031823405 @default.
- W2078495963 cites W2043665634 @default.
- W2078495963 cites W2067782748 @default.
- W2078495963 cites W2069231830 @default.
- W2078495963 cites W2076977679 @default.
- W2078495963 cites W2078296814 @default.
- W2078495963 cites W2087347434 @default.
- W2078495963 cites W2098057602 @default.
- W2078495963 cites W2099129687 @default.
- W2078495963 cites W2100476723 @default.
- W2078495963 cites W2101687885 @default.
- W2078495963 cites W2101711129 @default.
- W2078495963 cites W2104269704 @default.
- W2078495963 cites W2104520867 @default.
- W2078495963 cites W2106092565 @default.
- W2078495963 cites W2106503792 @default.
- W2078495963 cites W2111787810 @default.
- W2078495963 cites W2113458744 @default.
- W2078495963 cites W2120184245 @default.
- W2078495963 cites W2124463804 @default.
- W2078495963 cites W2124706543 @default.
- W2078495963 cites W2125201264 @default.
- W2078495963 cites W2126029357 @default.
- W2078495963 cites W2129652905 @default.
- W2078495963 cites W2134601045 @default.
- W2078495963 cites W2136251662 @default.
- W2078495963 cites W2139212933 @default.
- W2078495963 cites W2140996489 @default.
- W2078495963 cites W2144299089 @default.
- W2078495963 cites W2146611644 @default.
- W2078495963 cites W2148791530 @default.
- W2078495963 cites W2150772522 @default.
- W2078495963 cites W2153409933 @default.
- W2078495963 cites W2153534417 @default.
- W2078495963 cites W2153747028 @default.
- W2078495963 cites W2156316030 @default.
- W2078495963 cites W2161444669 @default.
- W2078495963 cites W2164330327 @default.
- W2078495963 cites W2164769329 @default.
- W2078495963 cites W2168481151 @default.
- W2078495963 cites W4301109526 @default.
- W2078495963 cites W4375905827 @default.
- W2078495963 doi "https://doi.org/10.1109/tgrs.2011.2176341" @default.
- W2078495963 hasPublicationYear "2012" @default.
- W2078495963 type Work @default.
- W2078495963 sameAs 2078495963 @default.
- W2078495963 citedByCount "169" @default.
- W2078495963 countsByYear W20784959632013 @default.
- W2078495963 countsByYear W20784959632014 @default.
- W2078495963 countsByYear W20784959632015 @default.
- W2078495963 countsByYear W20784959632016 @default.
- W2078495963 countsByYear W20784959632017 @default.
- W2078495963 countsByYear W20784959632018 @default.
- W2078495963 countsByYear W20784959632019 @default.
- W2078495963 countsByYear W20784959632020 @default.
- W2078495963 countsByYear W20784959632021 @default.
- W2078495963 countsByYear W20784959632022 @default.
- W2078495963 countsByYear W20784959632023 @default.
- W2078495963 crossrefType "journal-article" @default.
- W2078495963 hasAuthorship W2078495963A5002688054 @default.
- W2078495963 hasAuthorship W2078495963A5013038112 @default.
- W2078495963 hasAuthorship W2078495963A5022959928 @default.
- W2078495963 hasAuthorship W2078495963A5034748006 @default.
- W2078495963 hasAuthorship W2078495963A5076623908 @default.
- W2078495963 hasAuthorship W2078495963A5082117229 @default.
- W2078495963 hasConcept C114614502 @default.
- W2078495963 hasConcept C119857082 @default.
- W2078495963 hasConcept C122280245 @default.
- W2078495963 hasConcept C12267149 @default.
- W2078495963 hasConcept C12426560 @default.
- W2078495963 hasConcept C153180895 @default.
- W2078495963 hasConcept C154945302 @default.
- W2078495963 hasConcept C159078339 @default.
- W2078495963 hasConcept C2524010 @default.
- W2078495963 hasConcept C2776879701 @default.
- W2078495963 hasConcept C2781067378 @default.
- W2078495963 hasConcept C33923547 @default.
- W2078495963 hasConcept C41008148 @default.
- W2078495963 hasConcept C74193536 @default.
- W2078495963 hasConceptScore W2078495963C114614502 @default.
- W2078495963 hasConceptScore W2078495963C119857082 @default.
- W2078495963 hasConceptScore W2078495963C122280245 @default.
- W2078495963 hasConceptScore W2078495963C12267149 @default.
- W2078495963 hasConceptScore W2078495963C12426560 @default.