Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078508434> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2078508434 abstract "Image segmentation is considered one of the essential steps in medical image analysis. Cases such as classification of tissue structures for quantitative analysis, reconstruction of anatomical volumes for visualization, and registration of multi-modality images for complementary study often require the segmentation of the brain to accomplish the task. In many clinical applications, parts of this task are performed either manually or interactively. Not only is this proces often tedious and time-consuming, it introduces additional external factors of inter- and intra-rater variability. In this paper, we present a 3D automated algorithm for segmenting the brain from various MR images. This algorithm consists of a sequence of pre-determined steps: First, an intensity window for initial separation of the brain volume from the background and non-brain structures is selected by using probability curves fitting on the intensity histogram. Next, a 3D isotropic volume is interpolated and an optimal threshold value is determined to construct a binary brain mask. The morphological and connectivity processes are then applied on this 3D mask for eliminating the non-brain structures. Finally, a surface extraction kernel is applied to extract the 3D brain surface. Preliminary results from the same subjects with different pulse sequences are compared with the manual segmentation. The automatically segmented brain volumes are compared with the manual results using the correlation coefficient and percentage overlay. Then the automatically detected surfaces are measured with the manual contouring in terms of RMS distance. The introduced automatic segmentation algorithm is effective on different sequences of MR data sets without any parameter tuning. It requires no user interaction so variability introduced by manual tracing or interactive thresholding can be eliminated. Currently, the introduced segmentation algorithm is applied in the automated inter- and intra-modality image registration. It will furthermore be used in different applications such as quantitative analysis of normal and abnormal brain tissues." @default.
- W2078508434 created "2016-06-24" @default.
- W2078508434 creator A5044993271 @default.
- W2078508434 creator A5069528530 @default.
- W2078508434 creator A5071064016 @default.
- W2078508434 date "1999-05-21" @default.
- W2078508434 modified "2023-09-26" @default.
- W2078508434 title "<title>Hierarchical approach for automated segmentation of the brain volume from MR images</title>" @default.
- W2078508434 doi "https://doi.org/10.1117/12.348492" @default.
- W2078508434 hasPublicationYear "1999" @default.
- W2078508434 type Work @default.
- W2078508434 sameAs 2078508434 @default.
- W2078508434 citedByCount "2" @default.
- W2078508434 crossrefType "proceedings-article" @default.
- W2078508434 hasAuthorship W2078508434A5044993271 @default.
- W2078508434 hasAuthorship W2078508434A5069528530 @default.
- W2078508434 hasAuthorship W2078508434A5071064016 @default.
- W2078508434 hasConcept C114614502 @default.
- W2078508434 hasConcept C115961682 @default.
- W2078508434 hasConcept C121332964 @default.
- W2078508434 hasConcept C121684516 @default.
- W2078508434 hasConcept C124504099 @default.
- W2078508434 hasConcept C153180895 @default.
- W2078508434 hasConcept C154945302 @default.
- W2078508434 hasConcept C20556612 @default.
- W2078508434 hasConcept C2779104521 @default.
- W2078508434 hasConcept C31972630 @default.
- W2078508434 hasConcept C33923547 @default.
- W2078508434 hasConcept C36464697 @default.
- W2078508434 hasConcept C41008148 @default.
- W2078508434 hasConcept C53533937 @default.
- W2078508434 hasConcept C62520636 @default.
- W2078508434 hasConcept C74193536 @default.
- W2078508434 hasConcept C89600930 @default.
- W2078508434 hasConceptScore W2078508434C114614502 @default.
- W2078508434 hasConceptScore W2078508434C115961682 @default.
- W2078508434 hasConceptScore W2078508434C121332964 @default.
- W2078508434 hasConceptScore W2078508434C121684516 @default.
- W2078508434 hasConceptScore W2078508434C124504099 @default.
- W2078508434 hasConceptScore W2078508434C153180895 @default.
- W2078508434 hasConceptScore W2078508434C154945302 @default.
- W2078508434 hasConceptScore W2078508434C20556612 @default.
- W2078508434 hasConceptScore W2078508434C2779104521 @default.
- W2078508434 hasConceptScore W2078508434C31972630 @default.
- W2078508434 hasConceptScore W2078508434C33923547 @default.
- W2078508434 hasConceptScore W2078508434C36464697 @default.
- W2078508434 hasConceptScore W2078508434C41008148 @default.
- W2078508434 hasConceptScore W2078508434C53533937 @default.
- W2078508434 hasConceptScore W2078508434C62520636 @default.
- W2078508434 hasConceptScore W2078508434C74193536 @default.
- W2078508434 hasConceptScore W2078508434C89600930 @default.
- W2078508434 hasLocation W20785084341 @default.
- W2078508434 hasOpenAccess W2078508434 @default.
- W2078508434 hasPrimaryLocation W20785084341 @default.
- W2078508434 hasRelatedWork W1507266234 @default.
- W2078508434 hasRelatedWork W1669643531 @default.
- W2078508434 hasRelatedWork W2110230079 @default.
- W2078508434 hasRelatedWork W2117664411 @default.
- W2078508434 hasRelatedWork W2117933325 @default.
- W2078508434 hasRelatedWork W2122581818 @default.
- W2078508434 hasRelatedWork W2159066190 @default.
- W2078508434 hasRelatedWork W2549936415 @default.
- W2078508434 hasRelatedWork W2739874619 @default.
- W2078508434 hasRelatedWork W1967061043 @default.
- W2078508434 isParatext "false" @default.
- W2078508434 isRetracted "false" @default.
- W2078508434 magId "2078508434" @default.
- W2078508434 workType "article" @default.