Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078550116> ?p ?o ?g. }
- W2078550116 endingPage "231" @default.
- W2078550116 startingPage "205" @default.
- W2078550116 abstract "Abstract This paper presents an approach for slip prediction from a distance for wheeled ground robots using visual information as input. Large amounts of slippage which can occur on certain surfaces, such as sandy slopes, will negatively affect rover mobility. Therefore, obtaining information about slip before entering such terrain can be very useful for better planning and avoiding these areas. To address this problem, terrain appearance and geometry information about map cells are correlated to the slip measured by the rover while traversing each cell. This relationship is learned from previous experience, so slip can be predicted remotely from visual information only. The proposed method consists of terrain type recognition and nonlinear regression modeling. The method has been implemented and tested offline on several off‐road terrains including: soil, sand, gravel, and woodchips. The final slip prediction error is about 20%. The system is intended for improved navigation on steep slopes and rough terrain for Mars rovers. © 2006 Wiley Periodicals, Inc." @default.
- W2078550116 created "2016-06-24" @default.
- W2078550116 creator A5005584446 @default.
- W2078550116 creator A5026825380 @default.
- W2078550116 creator A5036099508 @default.
- W2078550116 creator A5066709641 @default.
- W2078550116 date "2007-03-01" @default.
- W2078550116 modified "2023-10-18" @default.
- W2078550116 title "Learning and prediction of slip from visual information" @default.
- W2078550116 cites W1480376833 @default.
- W2078550116 cites W1484228140 @default.
- W2078550116 cites W1501506108 @default.
- W2078550116 cites W1524024963 @default.
- W2078550116 cites W1525805148 @default.
- W2078550116 cites W1563055131 @default.
- W2078550116 cites W1751898876 @default.
- W2078550116 cites W1972855608 @default.
- W2078550116 cites W1976606095 @default.
- W2078550116 cites W2026336946 @default.
- W2078550116 cites W2039995447 @default.
- W2078550116 cites W2044881365 @default.
- W2078550116 cites W2071913483 @default.
- W2078550116 cites W2093703258 @default.
- W2078550116 cites W2096838415 @default.
- W2078550116 cites W2108082645 @default.
- W2078550116 cites W2113560487 @default.
- W2078550116 cites W2116814604 @default.
- W2078550116 cites W2123222503 @default.
- W2078550116 cites W2125240024 @default.
- W2078550116 cites W2132498399 @default.
- W2078550116 cites W2136763648 @default.
- W2078550116 cites W2150884987 @default.
- W2078550116 cites W2155321470 @default.
- W2078550116 cites W2163583908 @default.
- W2078550116 cites W2164958744 @default.
- W2078550116 cites W2167804690 @default.
- W2078550116 cites W2171116265 @default.
- W2078550116 cites W49348824 @default.
- W2078550116 doi "https://doi.org/10.1002/rob.20179" @default.
- W2078550116 hasPublicationYear "2007" @default.
- W2078550116 type Work @default.
- W2078550116 sameAs 2078550116 @default.
- W2078550116 citedByCount "133" @default.
- W2078550116 countsByYear W20785501162012 @default.
- W2078550116 countsByYear W20785501162013 @default.
- W2078550116 countsByYear W20785501162014 @default.
- W2078550116 countsByYear W20785501162015 @default.
- W2078550116 countsByYear W20785501162016 @default.
- W2078550116 countsByYear W20785501162017 @default.
- W2078550116 countsByYear W20785501162018 @default.
- W2078550116 countsByYear W20785501162019 @default.
- W2078550116 countsByYear W20785501162020 @default.
- W2078550116 countsByYear W20785501162021 @default.
- W2078550116 countsByYear W20785501162022 @default.
- W2078550116 countsByYear W20785501162023 @default.
- W2078550116 crossrefType "journal-article" @default.
- W2078550116 hasAuthorship W2078550116A5005584446 @default.
- W2078550116 hasAuthorship W2078550116A5026825380 @default.
- W2078550116 hasAuthorship W2078550116A5036099508 @default.
- W2078550116 hasAuthorship W2078550116A5066709641 @default.
- W2078550116 hasConcept C121332964 @default.
- W2078550116 hasConcept C127313418 @default.
- W2078550116 hasConcept C127413603 @default.
- W2078550116 hasConcept C1276947 @default.
- W2078550116 hasConcept C13280743 @default.
- W2078550116 hasConcept C146978453 @default.
- W2078550116 hasConcept C154945302 @default.
- W2078550116 hasConcept C161840515 @default.
- W2078550116 hasConcept C176809094 @default.
- W2078550116 hasConcept C195268267 @default.
- W2078550116 hasConcept C205649164 @default.
- W2078550116 hasConcept C2776096238 @default.
- W2078550116 hasConcept C31972630 @default.
- W2078550116 hasConcept C41008148 @default.
- W2078550116 hasConcept C58640448 @default.
- W2078550116 hasConcept C62649853 @default.
- W2078550116 hasConcept C66938386 @default.
- W2078550116 hasConcept C83260615 @default.
- W2078550116 hasConcept C90509273 @default.
- W2078550116 hasConceptScore W2078550116C121332964 @default.
- W2078550116 hasConceptScore W2078550116C127313418 @default.
- W2078550116 hasConceptScore W2078550116C127413603 @default.
- W2078550116 hasConceptScore W2078550116C1276947 @default.
- W2078550116 hasConceptScore W2078550116C13280743 @default.
- W2078550116 hasConceptScore W2078550116C146978453 @default.
- W2078550116 hasConceptScore W2078550116C154945302 @default.
- W2078550116 hasConceptScore W2078550116C161840515 @default.
- W2078550116 hasConceptScore W2078550116C176809094 @default.
- W2078550116 hasConceptScore W2078550116C195268267 @default.
- W2078550116 hasConceptScore W2078550116C205649164 @default.
- W2078550116 hasConceptScore W2078550116C2776096238 @default.
- W2078550116 hasConceptScore W2078550116C31972630 @default.
- W2078550116 hasConceptScore W2078550116C41008148 @default.
- W2078550116 hasConceptScore W2078550116C58640448 @default.
- W2078550116 hasConceptScore W2078550116C62649853 @default.
- W2078550116 hasConceptScore W2078550116C66938386 @default.
- W2078550116 hasConceptScore W2078550116C83260615 @default.
- W2078550116 hasConceptScore W2078550116C90509273 @default.