Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078556671> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2078556671 endingPage "170" @default.
- W2078556671 startingPage "161" @default.
- W2078556671 abstract "Artificial neural networks (ANN) have their origins in efforts to produce computer models of the information processing that takes place in the brain. They have found application in a wide variety of fields such as image analysis of facial features, traffic management of underground station platforms, hand-writing verification of cheques, stock market predictions, etc. They have also been applied to computer-aided molecular design, notably protein structure prediction, and more recently ANN have been used to perform statistical tasks such as discriminant analysis and multiple linear regression in the investigation of Quantitative Structure-Activity Relationships (QSAR). We have begun a study of the properties of ANN when used to perform such multivariate statistical analyses. The most popular network used in QSAR-type applications is the multi-layer feed-forward network, also known as the back propagation multi-layer perceptron (MLP). The approaches of MLP and multiple linear regression to modelling are discussed. In order to give some insight into the operation of MLP networks we have carried out experiments with artificial data. Finally, we report two examples of MLP in computer-aided design, a QSAR analysis and the prediction of secondary protein structure." @default.
- W2078556671 created "2016-06-24" @default.
- W2078556671 creator A5019767908 @default.
- W2078556671 creator A5019793286 @default.
- W2078556671 creator A5047947874 @default.
- W2078556671 creator A5065419254 @default.
- W2078556671 date "1992-01-01" @default.
- W2078556671 modified "2023-10-14" @default.
- W2078556671 title "The Use of Artificial Neural Networks in QSAR" @default.
- W2078556671 cites W1971735090 @default.
- W2078556671 cites W1973269398 @default.
- W2078556671 cites W1988358579 @default.
- W2078556671 cites W1989078714 @default.
- W2078556671 cites W1991556697 @default.
- W2078556671 cites W1992282307 @default.
- W2078556671 cites W2008451846 @default.
- W2078556671 cites W2017398555 @default.
- W2078556671 cites W2048522468 @default.
- W2078556671 cites W2062790822 @default.
- W2078556671 cites W2069279616 @default.
- W2078556671 cites W2072407420 @default.
- W2078556671 cites W2083534494 @default.
- W2078556671 cites W2091706571 @default.
- W2078556671 cites W2119423166 @default.
- W2078556671 cites W2131329059 @default.
- W2078556671 cites W2137983211 @default.
- W2078556671 cites W2152121191 @default.
- W2078556671 cites W2463835001 @default.
- W2078556671 cites W2513089610 @default.
- W2078556671 cites W85259421 @default.
- W2078556671 doi "https://doi.org/10.1002/ps.2780360212" @default.
- W2078556671 hasPublicationYear "1992" @default.
- W2078556671 type Work @default.
- W2078556671 sameAs 2078556671 @default.
- W2078556671 citedByCount "83" @default.
- W2078556671 countsByYear W20785566712012 @default.
- W2078556671 countsByYear W20785566712013 @default.
- W2078556671 countsByYear W20785566712015 @default.
- W2078556671 countsByYear W20785566712016 @default.
- W2078556671 countsByYear W20785566712017 @default.
- W2078556671 countsByYear W20785566712018 @default.
- W2078556671 countsByYear W20785566712019 @default.
- W2078556671 countsByYear W20785566712020 @default.
- W2078556671 countsByYear W20785566712021 @default.
- W2078556671 countsByYear W20785566712022 @default.
- W2078556671 countsByYear W20785566712023 @default.
- W2078556671 crossrefType "journal-article" @default.
- W2078556671 hasAuthorship W2078556671A5019767908 @default.
- W2078556671 hasAuthorship W2078556671A5019793286 @default.
- W2078556671 hasAuthorship W2078556671A5047947874 @default.
- W2078556671 hasAuthorship W2078556671A5065419254 @default.
- W2078556671 hasConcept C119857082 @default.
- W2078556671 hasConcept C124101348 @default.
- W2078556671 hasConcept C154945302 @default.
- W2078556671 hasConcept C161584116 @default.
- W2078556671 hasConcept C164126121 @default.
- W2078556671 hasConcept C179717631 @default.
- W2078556671 hasConcept C41008148 @default.
- W2078556671 hasConcept C48921125 @default.
- W2078556671 hasConcept C50644808 @default.
- W2078556671 hasConcept C60908668 @default.
- W2078556671 hasConcept C69738355 @default.
- W2078556671 hasConceptScore W2078556671C119857082 @default.
- W2078556671 hasConceptScore W2078556671C124101348 @default.
- W2078556671 hasConceptScore W2078556671C154945302 @default.
- W2078556671 hasConceptScore W2078556671C161584116 @default.
- W2078556671 hasConceptScore W2078556671C164126121 @default.
- W2078556671 hasConceptScore W2078556671C179717631 @default.
- W2078556671 hasConceptScore W2078556671C41008148 @default.
- W2078556671 hasConceptScore W2078556671C48921125 @default.
- W2078556671 hasConceptScore W2078556671C50644808 @default.
- W2078556671 hasConceptScore W2078556671C60908668 @default.
- W2078556671 hasConceptScore W2078556671C69738355 @default.
- W2078556671 hasIssue "2" @default.
- W2078556671 hasLocation W20785566711 @default.
- W2078556671 hasOpenAccess W2078556671 @default.
- W2078556671 hasPrimaryLocation W20785566711 @default.
- W2078556671 hasRelatedWork W2019891950 @default.
- W2078556671 hasRelatedWork W2076543106 @default.
- W2078556671 hasRelatedWork W2085842814 @default.
- W2078556671 hasRelatedWork W2123979461 @default.
- W2078556671 hasRelatedWork W2362514456 @default.
- W2078556671 hasRelatedWork W2492135063 @default.
- W2078556671 hasRelatedWork W2523437662 @default.
- W2078556671 hasRelatedWork W2766585573 @default.
- W2078556671 hasRelatedWork W4387048144 @default.
- W2078556671 hasRelatedWork W4387490624 @default.
- W2078556671 hasVolume "36" @default.
- W2078556671 isParatext "false" @default.
- W2078556671 isRetracted "false" @default.
- W2078556671 magId "2078556671" @default.
- W2078556671 workType "article" @default.