Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078610757> ?p ?o ?g. }
- W2078610757 endingPage "628" @default.
- W2078610757 startingPage "620" @default.
- W2078610757 abstract "Metal prostheses cause artifacts in computed tomography (CT) images. The purpose of this work was to design an efficient and accurate metal segmentation in raw data to achieve artifact suppression and to improve CT image quality for patients with metal hip or shoulder prostheses.The artifact suppression technique incorporates two steps: metal object segmentation in raw data and replacement of the segmented region by new values using an interpolation scheme, followed by addition of the scaled metal signal intensity. Segmentation of metal is performed directly in sinograms, making it efficient and different from current methods that perform segmentation in reconstructed images in combination with Radon transformations. Metal signal segmentation is achieved by using a Markov random field model (MRF). Three interpolation methods are applied and investigated. To provide a proof of concept, CT data of five patients with metal implants were included in the study, as well as CT data of a PMMA phantom with Teflon, PVC, and titanium inserts. Accuracy was determined quantitatively by comparing mean Hounsfield (HU) values and standard deviation (SD) as a measure of distortion in phantom images with titanium (original and suppressed) and without titanium insert. Qualitative improvement was assessed by comparing uncorrected clinical images with artifact suppressed images.Artifacts in CT data of a phantom and five patients were automatically suppressed. The general visibility of structures clearly improved. In phantom images, the technique showed reduced SD close to the SD for the case where titanium was not inserted, indicating improved image quality. HU values in corrected images were different from expected values for all interpolation methods. Subtle differences between interpolation methods were found.The new artifact suppression design is efficient, for instance, in terms of preserving spatial resolution, as it is applied directly to original raw data. It successfully reduced artifacts in CT images of five patients and in phantom images. Sophisticated interpolation methods are needed to obtain reliable HU values close to the prosthesis." @default.
- W2078610757 created "2016-06-24" @default.
- W2078610757 creator A5022902115 @default.
- W2078610757 creator A5025041141 @default.
- W2078610757 creator A5047053185 @default.
- W2078610757 creator A5091069986 @default.
- W2078610757 date "2010-01-20" @default.
- W2078610757 modified "2023-10-05" @default.
- W2078610757 title "Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT" @default.
- W2078610757 cites W1547714734 @default.
- W2078610757 cites W1554544485 @default.
- W2078610757 cites W1966253858 @default.
- W2078610757 cites W1978397329 @default.
- W2078610757 cites W1991666612 @default.
- W2078610757 cites W1996296642 @default.
- W2078610757 cites W2023160828 @default.
- W2078610757 cites W2023901298 @default.
- W2078610757 cites W2030027103 @default.
- W2078610757 cites W2042580235 @default.
- W2078610757 cites W2119408205 @default.
- W2078610757 cites W2126945118 @default.
- W2078610757 cites W2131362583 @default.
- W2078610757 cites W2151119515 @default.
- W2078610757 cites W2154129661 @default.
- W2078610757 cites W2154503237 @default.
- W2078610757 cites W2168730277 @default.
- W2078610757 cites W2898550391 @default.
- W2078610757 doi "https://doi.org/10.1118/1.3276777" @default.
- W2078610757 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20229871" @default.
- W2078610757 hasPublicationYear "2010" @default.
- W2078610757 type Work @default.
- W2078610757 sameAs 2078610757 @default.
- W2078610757 citedByCount "112" @default.
- W2078610757 countsByYear W20786107572012 @default.
- W2078610757 countsByYear W20786107572013 @default.
- W2078610757 countsByYear W20786107572014 @default.
- W2078610757 countsByYear W20786107572015 @default.
- W2078610757 countsByYear W20786107572016 @default.
- W2078610757 countsByYear W20786107572017 @default.
- W2078610757 countsByYear W20786107572018 @default.
- W2078610757 countsByYear W20786107572019 @default.
- W2078610757 countsByYear W20786107572020 @default.
- W2078610757 countsByYear W20786107572021 @default.
- W2078610757 countsByYear W20786107572022 @default.
- W2078610757 crossrefType "journal-article" @default.
- W2078610757 hasAuthorship W2078610757A5022902115 @default.
- W2078610757 hasAuthorship W2078610757A5025041141 @default.
- W2078610757 hasAuthorship W2078610757A5047053185 @default.
- W2078610757 hasAuthorship W2078610757A5091069986 @default.
- W2078610757 hasConcept C104293457 @default.
- W2078610757 hasConcept C115961682 @default.
- W2078610757 hasConcept C124504099 @default.
- W2078610757 hasConcept C126838900 @default.
- W2078610757 hasConcept C136229726 @default.
- W2078610757 hasConcept C137800194 @default.
- W2078610757 hasConcept C154945302 @default.
- W2078610757 hasConcept C187954543 @default.
- W2078610757 hasConcept C192562407 @default.
- W2078610757 hasConcept C2778045648 @default.
- W2078610757 hasConcept C2779010991 @default.
- W2078610757 hasConcept C2989005 @default.
- W2078610757 hasConcept C31972630 @default.
- W2078610757 hasConcept C41008148 @default.
- W2078610757 hasConcept C544519230 @default.
- W2078610757 hasConcept C55020928 @default.
- W2078610757 hasConcept C71924100 @default.
- W2078610757 hasConcept C89600930 @default.
- W2078610757 hasConceptScore W2078610757C104293457 @default.
- W2078610757 hasConceptScore W2078610757C115961682 @default.
- W2078610757 hasConceptScore W2078610757C124504099 @default.
- W2078610757 hasConceptScore W2078610757C126838900 @default.
- W2078610757 hasConceptScore W2078610757C136229726 @default.
- W2078610757 hasConceptScore W2078610757C137800194 @default.
- W2078610757 hasConceptScore W2078610757C154945302 @default.
- W2078610757 hasConceptScore W2078610757C187954543 @default.
- W2078610757 hasConceptScore W2078610757C192562407 @default.
- W2078610757 hasConceptScore W2078610757C2778045648 @default.
- W2078610757 hasConceptScore W2078610757C2779010991 @default.
- W2078610757 hasConceptScore W2078610757C2989005 @default.
- W2078610757 hasConceptScore W2078610757C31972630 @default.
- W2078610757 hasConceptScore W2078610757C41008148 @default.
- W2078610757 hasConceptScore W2078610757C544519230 @default.
- W2078610757 hasConceptScore W2078610757C55020928 @default.
- W2078610757 hasConceptScore W2078610757C71924100 @default.
- W2078610757 hasConceptScore W2078610757C89600930 @default.
- W2078610757 hasIssue "2" @default.
- W2078610757 hasLocation W20786107571 @default.
- W2078610757 hasLocation W20786107572 @default.
- W2078610757 hasOpenAccess W2078610757 @default.
- W2078610757 hasPrimaryLocation W20786107571 @default.
- W2078610757 hasRelatedWork W1669643531 @default.
- W2078610757 hasRelatedWork W2005437358 @default.
- W2078610757 hasRelatedWork W2008656436 @default.
- W2078610757 hasRelatedWork W2023558673 @default.
- W2078610757 hasRelatedWork W2110230079 @default.
- W2078610757 hasRelatedWork W2134924024 @default.
- W2078610757 hasRelatedWork W2149623758 @default.
- W2078610757 hasRelatedWork W2215132873 @default.