Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078621841> ?p ?o ?g. }
- W2078621841 endingPage "34" @default.
- W2078621841 startingPage "21" @default.
- W2078621841 abstract "Successful applications of stochastic models for simulating and predicting daily stream temperature have been reported in the literature. These stochastic models have been generally tested on small rivers and have used only air temperature as an exogenous variable. This study investigates the stochastic modelling of daily mean stream water temperatures on the Moisie River, a relatively large unregulated river located in Québec, Canada. The objective of the study is to compare different stochastic approaches previously used on small streams to relate mean daily water temperatures to air temperatures and streamflow indices. Various stochastic approaches are used to model the water temperature residuals, representing short-term variations, which were obtained by subtracting the seasonal components from water temperature time-series. The first three models, a multiple regression, a second-order autoregressive model, and a Box and Jenkins model, used only lagged air temperature residuals as exogenous variables. The root-mean-square error (RMSE) for these models varied between 0·53 and 1·70 °C and the second-order autoregressive model provided the best results. A statistical methodology using best subsets regression is proposed to model the combined effect of discharge and air temperature on stream temperatures. Various streamflow indices were considered as additional independent variables, and models with different number of variables were tested. The results indicated that the best model included relative change in flow as the most important streamflow index. The RMSE for this model was of the order of 0·51 °C, which shows a small improvement over the first three models that did not include streamflow indices. The ridge regression was applied to this model to alleviate the potential statistical inadequacies associated with multicollinearity. The amplitude and sign of the ridge regression coefficients seem to be more in agreement with prior expectations (e.g. positive correlation between water temperature residuals of different lags) and make more physical sense. Copyright © 2006 John Wiley & Sons, Ltd." @default.
- W2078621841 created "2016-06-24" @default.
- W2078621841 creator A5030528233 @default.
- W2078621841 creator A5034610867 @default.
- W2078621841 creator A5043283092 @default.
- W2078621841 creator A5047595798 @default.
- W2078621841 creator A5055949420 @default.
- W2078621841 creator A5058425659 @default.
- W2078621841 creator A5070269067 @default.
- W2078621841 date "2006-01-01" @default.
- W2078621841 modified "2023-10-17" @default.
- W2078621841 title "Predicting river water temperatures using stochastic models: case study of the Moisie River (Québec, Canada)" @default.
- W2078621841 cites W158764539 @default.
- W2078621841 cites W1967614778 @default.
- W2078621841 cites W1972633414 @default.
- W2078621841 cites W1995362251 @default.
- W2078621841 cites W2014725748 @default.
- W2078621841 cites W2018214289 @default.
- W2078621841 cites W2021638339 @default.
- W2078621841 cites W2021954714 @default.
- W2078621841 cites W2029591097 @default.
- W2078621841 cites W2031330023 @default.
- W2078621841 cites W2033904036 @default.
- W2078621841 cites W2035174903 @default.
- W2078621841 cites W2038698475 @default.
- W2078621841 cites W2042262906 @default.
- W2078621841 cites W2050022705 @default.
- W2078621841 cites W2050819216 @default.
- W2078621841 cites W2052194672 @default.
- W2078621841 cites W2057705926 @default.
- W2078621841 cites W2064424033 @default.
- W2078621841 cites W2067843160 @default.
- W2078621841 cites W2077824617 @default.
- W2078621841 cites W2089826718 @default.
- W2078621841 cites W2105119576 @default.
- W2078621841 cites W2135134353 @default.
- W2078621841 cites W2141190577 @default.
- W2078621841 cites W2142635246 @default.
- W2078621841 cites W2154364421 @default.
- W2078621841 cites W2166796724 @default.
- W2078621841 cites W2168175751 @default.
- W2078621841 cites W2170273899 @default.
- W2078621841 cites W2254418134 @default.
- W2078621841 cites W2297164673 @default.
- W2078621841 cites W2313970376 @default.
- W2078621841 cites W2322534918 @default.
- W2078621841 cites W4205969772 @default.
- W2078621841 cites W4234698323 @default.
- W2078621841 cites W4235348696 @default.
- W2078621841 cites W4246451860 @default.
- W2078621841 doi "https://doi.org/10.1002/hyp.6353" @default.
- W2078621841 hasPublicationYear "2006" @default.
- W2078621841 type Work @default.
- W2078621841 sameAs 2078621841 @default.
- W2078621841 citedByCount "84" @default.
- W2078621841 countsByYear W20786218412012 @default.
- W2078621841 countsByYear W20786218412013 @default.
- W2078621841 countsByYear W20786218412014 @default.
- W2078621841 countsByYear W20786218412015 @default.
- W2078621841 countsByYear W20786218412016 @default.
- W2078621841 countsByYear W20786218412017 @default.
- W2078621841 countsByYear W20786218412018 @default.
- W2078621841 countsByYear W20786218412019 @default.
- W2078621841 countsByYear W20786218412020 @default.
- W2078621841 countsByYear W20786218412021 @default.
- W2078621841 countsByYear W20786218412022 @default.
- W2078621841 countsByYear W20786218412023 @default.
- W2078621841 crossrefType "journal-article" @default.
- W2078621841 hasAuthorship W2078621841A5030528233 @default.
- W2078621841 hasAuthorship W2078621841A5034610867 @default.
- W2078621841 hasAuthorship W2078621841A5043283092 @default.
- W2078621841 hasAuthorship W2078621841A5047595798 @default.
- W2078621841 hasAuthorship W2078621841A5055949420 @default.
- W2078621841 hasAuthorship W2078621841A5058425659 @default.
- W2078621841 hasAuthorship W2078621841A5070269067 @default.
- W2078621841 hasConcept C105795698 @default.
- W2078621841 hasConcept C126645576 @default.
- W2078621841 hasConcept C127313418 @default.
- W2078621841 hasConcept C127491075 @default.
- W2078621841 hasConcept C139945424 @default.
- W2078621841 hasConcept C152877465 @default.
- W2078621841 hasConcept C159877910 @default.
- W2078621841 hasConcept C187320778 @default.
- W2078621841 hasConcept C205649164 @default.
- W2078621841 hasConcept C31258907 @default.
- W2078621841 hasConcept C33923547 @default.
- W2078621841 hasConcept C39432304 @default.
- W2078621841 hasConcept C41008148 @default.
- W2078621841 hasConcept C42090638 @default.
- W2078621841 hasConcept C53739315 @default.
- W2078621841 hasConcept C58640448 @default.
- W2078621841 hasConcept C76886044 @default.
- W2078621841 hasConcept C81660378 @default.
- W2078621841 hasConcept C83546350 @default.
- W2078621841 hasConceptScore W2078621841C105795698 @default.
- W2078621841 hasConceptScore W2078621841C126645576 @default.
- W2078621841 hasConceptScore W2078621841C127313418 @default.
- W2078621841 hasConceptScore W2078621841C127491075 @default.