Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078633006> ?p ?o ?g. }
- W2078633006 endingPage "215" @default.
- W2078633006 startingPage "201" @default.
- W2078633006 abstract "Periventricular leukomalacia (PVL) is part of a spectrum of cerebral white matter injury which is associated with adverse neurodevelopmental outcome in preterm infants. While PVL is common in neonates with cardiac disease, both before and after surgery, it is less common in older infants with cardiac disease. Pre-, intra-, and postoperative risk factors for the occurrence of PVL are poorly understood. The main objective of the present work is to identify potential hemodynamic risk factors for PVL occurrence in neonates with complex heart disease using logistic regression analysis and decision tree algorithms.The postoperative hemodynamic and arterial blood gas data (monitoring variables) collected in the cardiac intensive care unit of Children's Hospital of Philadelphia were used for predicting the occurrence of PVL. Three categories of datasets for 103 infants and neonates were used-(1) original data without any preprocessing, (2) partial data keeping the admission, the maximum and the minimum values of the monitoring variables, and (3) extracted dataset of statistical features. The datasets were used as inputs for forward stepwise logistic regression to select the most significant variables as predictors. The selected features were then used as inputs to the decision tree induction algorithm for generating easily interpretable rules for prediction of PVL.Three sets of data were analyzed in SPSS for identifying statistically significant predictors (p<0.05) of PVL through stepwise logistic regression and their correlations. The classification success of the Case 3 dataset of extracted statistical features was best with sensitivity (SN), specificity (SP) and accuracy (AC) of 87, 88 and 87%, respectively. The identified features, when used with decision tree algorithms, gave SN, SP and AC of 90, 97 and 94% in training and 73, 58 and 65% in test. The identified variables in Case 3 dataset mainly included blood pressure, both systolic and diastolic, partial pressures pO(2) and pCO(2), and their statistical features like average, variance, skewness (a measure of asymmetry) and kurtosis (a measure of abrupt changes). Rules for prediction of PVL were generated automatically through the decision tree algorithms.The proposed approach combines the advantages of statistical approach (regression analysis) and data mining techniques (decision tree) for generation of easily interpretable rules for PVL prediction. The present work extends an earlier research [Galli KK, Zimmerman RA, Jarvik GP, Wernovsky G, Kuijpers M, Clancy RR, et al. Periventricular leukomalacia is common after cardiac surgery. J Thorac Cardiovasc Surg 2004;127:692-704] in the form of expanding the feature set, identifying additional prognostic factors (namely pCO(2)) emphasizing the temporal variations in addition to upper or lower values, and generating decision rules. The Case 3 dataset was further investigated in Part II for feature selection through computational intelligence." @default.
- W2078633006 created "2016-06-24" @default.
- W2078633006 creator A5005361661 @default.
- W2078633006 creator A5007400469 @default.
- W2078633006 creator A5016291356 @default.
- W2078633006 creator A5049112490 @default.
- W2078633006 creator A5049162285 @default.
- W2078633006 creator A5055520900 @default.
- W2078633006 creator A5056885320 @default.
- W2078633006 creator A5059340927 @default.
- W2078633006 creator A5075081789 @default.
- W2078633006 creator A5089043863 @default.
- W2078633006 date "2009-07-01" @default.
- W2078633006 modified "2023-10-05" @default.
- W2078633006 title "Prediction of periventricular leukomalacia. Part I: Selection of hemodynamic features using logistic regression and decision tree algorithms" @default.
- W2078633006 cites W1602443498 @default.
- W2078633006 cites W1789016606 @default.
- W2078633006 cites W1968944196 @default.
- W2078633006 cites W1981236246 @default.
- W2078633006 cites W2007644749 @default.
- W2078633006 cites W2016858228 @default.
- W2078633006 cites W2019300001 @default.
- W2078633006 cites W2029426756 @default.
- W2078633006 cites W2031680279 @default.
- W2078633006 cites W2033339846 @default.
- W2078633006 cites W2033647063 @default.
- W2078633006 cites W2034628853 @default.
- W2078633006 cites W2040409621 @default.
- W2078633006 cites W2044855063 @default.
- W2078633006 cites W2045980008 @default.
- W2078633006 cites W2061744691 @default.
- W2078633006 cites W2064352562 @default.
- W2078633006 cites W2066383852 @default.
- W2078633006 cites W2072250943 @default.
- W2078633006 cites W2072598671 @default.
- W2078633006 cites W2074932800 @default.
- W2078633006 cites W2084701993 @default.
- W2078633006 cites W2087642535 @default.
- W2078633006 cites W2100382017 @default.
- W2078633006 cites W2101976214 @default.
- W2078633006 cites W2116384424 @default.
- W2078633006 cites W2117825844 @default.
- W2078633006 cites W2119099646 @default.
- W2078633006 cites W2121467249 @default.
- W2078633006 cites W2124397907 @default.
- W2078633006 cites W2135477731 @default.
- W2078633006 cites W2144639743 @default.
- W2078633006 cites W2319887059 @default.
- W2078633006 doi "https://doi.org/10.1016/j.artmed.2008.12.005" @default.
- W2078633006 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2745267" @default.
- W2078633006 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19162455" @default.
- W2078633006 hasPublicationYear "2009" @default.
- W2078633006 type Work @default.
- W2078633006 sameAs 2078633006 @default.
- W2078633006 citedByCount "37" @default.
- W2078633006 countsByYear W20786330062012 @default.
- W2078633006 countsByYear W20786330062013 @default.
- W2078633006 countsByYear W20786330062014 @default.
- W2078633006 countsByYear W20786330062015 @default.
- W2078633006 countsByYear W20786330062016 @default.
- W2078633006 countsByYear W20786330062017 @default.
- W2078633006 countsByYear W20786330062018 @default.
- W2078633006 countsByYear W20786330062019 @default.
- W2078633006 countsByYear W20786330062020 @default.
- W2078633006 countsByYear W20786330062021 @default.
- W2078633006 countsByYear W20786330062022 @default.
- W2078633006 countsByYear W20786330062023 @default.
- W2078633006 crossrefType "journal-article" @default.
- W2078633006 hasAuthorship W2078633006A5005361661 @default.
- W2078633006 hasAuthorship W2078633006A5007400469 @default.
- W2078633006 hasAuthorship W2078633006A5016291356 @default.
- W2078633006 hasAuthorship W2078633006A5049112490 @default.
- W2078633006 hasAuthorship W2078633006A5049162285 @default.
- W2078633006 hasAuthorship W2078633006A5055520900 @default.
- W2078633006 hasAuthorship W2078633006A5056885320 @default.
- W2078633006 hasAuthorship W2078633006A5059340927 @default.
- W2078633006 hasAuthorship W2078633006A5075081789 @default.
- W2078633006 hasAuthorship W2078633006A5089043863 @default.
- W2078633006 hasBestOaLocation W20786330062 @default.
- W2078633006 hasConcept C105795698 @default.
- W2078633006 hasConcept C119857082 @default.
- W2078633006 hasConcept C126322002 @default.
- W2078633006 hasConcept C148483581 @default.
- W2078633006 hasConcept C151956035 @default.
- W2078633006 hasConcept C154945302 @default.
- W2078633006 hasConcept C164705383 @default.
- W2078633006 hasConcept C169258074 @default.
- W2078633006 hasConcept C170964787 @default.
- W2078633006 hasConcept C178853913 @default.
- W2078633006 hasConcept C2778376644 @default.
- W2078633006 hasConcept C2779234561 @default.
- W2078633006 hasConcept C2780123866 @default.
- W2078633006 hasConcept C33923547 @default.
- W2078633006 hasConcept C41008148 @default.
- W2078633006 hasConcept C54355233 @default.
- W2078633006 hasConcept C71924100 @default.
- W2078633006 hasConcept C84525736 @default.
- W2078633006 hasConcept C86803240 @default.