Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078652561> ?p ?o ?g. }
- W2078652561 endingPage "454" @default.
- W2078652561 startingPage "441" @default.
- W2078652561 abstract "An almost a priori method based on a simple theoretical model is developed for obtaining good estimates of the radius of convergence of Rayleigh-Schrodinger (RS) perturbation expansions. The procedure is applicable to the RS expansions of all stationary states of any system described by a Hamiltonian linear in a real perturbing parameter, e.g., the $frac{1}{Z}$ expansions of $N$-electron atomic isoelectronic sequences. The only system- and state-dependent information required is the norm of the first-order eigenfunction $ensuremath{parallel}{ensuremath{psi}}_{1}ensuremath{parallel}$. In those cases where $ensuremath{parallel}{ensuremath{psi}}_{1}ensuremath{parallel}$ is inaccessible or unavailable, it is shown how adequate perturbational-variational (PV) approximations can be simply obtained. The procedure has been applied to the $frac{1}{Z}$ expansions of the ground states and several low-lying states of the $2ensuremath{le}Nensuremath{le}10$ isoelectronic sequences. Where comparison is possible, the estimates are in close agreement with numerically obtained accurate convergence data and are greatly improved over the weak Kato-type bounds. For example, for the $1{s}^{2}^{1}S$ state of the helium isoelectronic sequence, convergence is found for $Zensuremath{ge}1$, hence for the first time predicting convergence for ${mathrm{H}}^{ensuremath{-}}$. Further, in harmony with physical expectations, our findings indicate that the effect of increasing $N$ on radii of convergence is drastic; thus, for the ground states of the $3ensuremath{le}Nensuremath{le}10$ isoelectronic sequences, the predicted region of convergence can be represented approximately by $Zensuremath{ge}3Nensuremath{-}7$. The influence of screening the nucleus in compensating for the effect of increasing $N$ is investigated and it is shown how the radius of convergence can be maximized by optimal screening. A PV method is introduced for obtaining estimates of the optimal screening parameter for arbitrary $N$ and states. It is predicted that for the ground states, the optimally screened expansions will converge for $Zensuremath{ge}3$ for the beryllium isoelectronic sequence, for $Zensuremath{ge}N$ for the boron through oxygen isoelectronic sequences, and for $Zensuremath{ge}N+1$ for the fluorine and neon isoelectronic sequences, thus extending the application of such expansions to at least $N=10$. Optimal screening is quantitatively tested for the $frac{1}{Z}$ eigenvalue expansion of the $1{s}^{2}2{s}^{2}^{1}S$ state of the beryllium isoelectronic sequence and the results are found to be in accord with predictions." @default.
- W2078652561 created "2016-06-24" @default.
- W2078652561 creator A5052915782 @default.
- W2078652561 date "1981-02-01" @default.
- W2078652561 modified "2023-10-16" @default.
- W2078652561 title "Estimation of radii of convergence of Rayleigh-Schrödinger perturbation expansions: Application to the<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mi>Z</mml:mi></mml:mrow></mml:mfrac></mml:math>expansions of two- through ten-electron atomic isoelectronic sequences" @default.
- W2078652561 cites W1527200020 @default.
- W2078652561 cites W1575147392 @default.
- W2078652561 cites W1633243998 @default.
- W2078652561 cites W1964420360 @default.
- W2078652561 cites W1966262349 @default.
- W2078652561 cites W1966554170 @default.
- W2078652561 cites W1967451312 @default.
- W2078652561 cites W1968292597 @default.
- W2078652561 cites W1968690916 @default.
- W2078652561 cites W1971476684 @default.
- W2078652561 cites W1972031071 @default.
- W2078652561 cites W1972800520 @default.
- W2078652561 cites W1972851177 @default.
- W2078652561 cites W1973693973 @default.
- W2078652561 cites W1974881740 @default.
- W2078652561 cites W1975856812 @default.
- W2078652561 cites W1979518001 @default.
- W2078652561 cites W1980585959 @default.
- W2078652561 cites W1981759893 @default.
- W2078652561 cites W1984377479 @default.
- W2078652561 cites W1986242299 @default.
- W2078652561 cites W1994707838 @default.
- W2078652561 cites W1996854067 @default.
- W2078652561 cites W1998399936 @default.
- W2078652561 cites W1998411741 @default.
- W2078652561 cites W1998434228 @default.
- W2078652561 cites W1999497455 @default.
- W2078652561 cites W2001194537 @default.
- W2078652561 cites W2003173769 @default.
- W2078652561 cites W2005555402 @default.
- W2078652561 cites W2010785223 @default.
- W2078652561 cites W2018043874 @default.
- W2078652561 cites W2020082478 @default.
- W2078652561 cites W2021190632 @default.
- W2078652561 cites W2023647062 @default.
- W2078652561 cites W2024660012 @default.
- W2078652561 cites W2033824900 @default.
- W2078652561 cites W2033932045 @default.
- W2078652561 cites W2034567203 @default.
- W2078652561 cites W2037797838 @default.
- W2078652561 cites W2039550401 @default.
- W2078652561 cites W2039598670 @default.
- W2078652561 cites W2041320132 @default.
- W2078652561 cites W2044010601 @default.
- W2078652561 cites W2047200029 @default.
- W2078652561 cites W2048276293 @default.
- W2078652561 cites W2049106422 @default.
- W2078652561 cites W2051118407 @default.
- W2078652561 cites W2051588719 @default.
- W2078652561 cites W2052159550 @default.
- W2078652561 cites W2052339049 @default.
- W2078652561 cites W2052516558 @default.
- W2078652561 cites W2053721754 @default.
- W2078652561 cites W2054597929 @default.
- W2078652561 cites W2056122903 @default.
- W2078652561 cites W2056370537 @default.
- W2078652561 cites W2057751238 @default.
- W2078652561 cites W2057830680 @default.
- W2078652561 cites W2057884265 @default.
- W2078652561 cites W2060282351 @default.
- W2078652561 cites W2062057620 @default.
- W2078652561 cites W2063994296 @default.
- W2078652561 cites W2064118190 @default.
- W2078652561 cites W2065263018 @default.
- W2078652561 cites W2065899606 @default.
- W2078652561 cites W2066715850 @default.
- W2078652561 cites W2066890491 @default.
- W2078652561 cites W2068304013 @default.
- W2078652561 cites W2069263381 @default.
- W2078652561 cites W2070019573 @default.
- W2078652561 cites W2071212150 @default.
- W2078652561 cites W2072150244 @default.
- W2078652561 cites W2076487004 @default.
- W2078652561 cites W2078989811 @default.
- W2078652561 cites W2081054117 @default.
- W2078652561 cites W2081124614 @default.
- W2078652561 cites W2082147148 @default.
- W2078652561 cites W2082737626 @default.
- W2078652561 cites W2083931435 @default.
- W2078652561 cites W2087687667 @default.
- W2078652561 cites W2090870917 @default.
- W2078652561 cites W2092544743 @default.
- W2078652561 cites W2092952049 @default.
- W2078652561 cites W2094824676 @default.
- W2078652561 cites W2095238111 @default.
- W2078652561 cites W2095372737 @default.
- W2078652561 cites W2099978487 @default.
- W2078652561 cites W2108428165 @default.
- W2078652561 cites W2113968642 @default.
- W2078652561 cites W2128436458 @default.
- W2078652561 cites W2145890067 @default.
- W2078652561 cites W2261523655 @default.