Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078666191> ?p ?o ?g. }
- W2078666191 endingPage "1749" @default.
- W2078666191 startingPage "1742" @default.
- W2078666191 abstract "The excited electronic states of noble metal Au and Ag nanocrystals are very different than those of molecules. Ag and Au nanocrystal optical transitions (plasmons) in the visible can be so intense that they significantly modify the local electromagnetic field. Also, coherent elastic Rayleigh light scattering is stronger than normal electronic absorption of photons for larger nanocrystals. These two facts make Au and Ag nanocrystals ideal nanoantennas, in that they focus incident light into the local neighborhood of subwavelength size. Surface-enhanced Raman scattering (SERS), in which the Raman scattering rate of nearby molecules increases by many orders of magnitude, is a consequence of this nanoantenna effect. Metallic nanocrystals also have no band gap; this makes them extraordinarily polarizable. Their electronic transitions sense the local environment. An extreme case is the interaction of two 30 nm Ag nanocrystals separated by a 1 nm gap. Their mutual polarization completely transforms the nature of the metallic excited electronic state. Single particles have an excited state uniformly distributed throughout the interior, while the nanocrystal dimer has its excited state localized on the metal surface in the junction. This creates an electromagnetic “hot spot” in the junction, enabling the observation of single-molecule SERS. The fact that surface molecules are typically chemisorbed and exchange electrons with the metal has interesting chemical consequences. First, the enhanced Raman intensities are controlled by quantum mechanical coupling of the molecular lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) with the optically excited electrons in the metal. Second, charge-transfer photochemistry can result from metal plasmon excitation. In crystalline Ag nanocrystals the photochemistry quantum yield can be high because the nanocrystal surface dominates plasmon nonradiative relaxation. Colloidal Ag nanocrystals stabilized by sodium citrate build up a photovoltage under visible excitation, caused by irreversible “hot hole” photo-oxidation of adsorbed citrate anion. This creates a driving force for photochemical transformation of round 8 nm Ag seeds into 70 nm single-crystal disk prisms under room lights, in a novel type of light-driven Ostwald ripening." @default.
- W2078666191 created "2016-06-24" @default.
- W2078666191 creator A5012651049 @default.
- W2078666191 date "2008-09-11" @default.
- W2078666191 modified "2023-10-10" @default.
- W2078666191 title "Noble Metal Nanocrystals: Plasmon Electron Transfer Photochemistry and Single-Molecule Raman Spectroscopy" @default.
- W2078666191 cites W1546843241 @default.
- W2078666191 cites W1968272139 @default.
- W2078666191 cites W1968507181 @default.
- W2078666191 cites W1974195152 @default.
- W2078666191 cites W1975039694 @default.
- W2078666191 cites W1980306452 @default.
- W2078666191 cites W1980781841 @default.
- W2078666191 cites W1981387821 @default.
- W2078666191 cites W1982736965 @default.
- W2078666191 cites W1984584131 @default.
- W2078666191 cites W1985541686 @default.
- W2078666191 cites W1987806893 @default.
- W2078666191 cites W1992361253 @default.
- W2078666191 cites W1992701571 @default.
- W2078666191 cites W1993507432 @default.
- W2078666191 cites W1997653619 @default.
- W2078666191 cites W1999173254 @default.
- W2078666191 cites W2003602789 @default.
- W2078666191 cites W2007935341 @default.
- W2078666191 cites W2010467127 @default.
- W2078666191 cites W2013498407 @default.
- W2078666191 cites W2016312003 @default.
- W2078666191 cites W2021179200 @default.
- W2078666191 cites W2026075600 @default.
- W2078666191 cites W2026129246 @default.
- W2078666191 cites W2032792515 @default.
- W2078666191 cites W2037816827 @default.
- W2078666191 cites W2044024547 @default.
- W2078666191 cites W2044538752 @default.
- W2078666191 cites W2045734636 @default.
- W2078666191 cites W2049020317 @default.
- W2078666191 cites W2052787265 @default.
- W2078666191 cites W2053277460 @default.
- W2078666191 cites W2055826030 @default.
- W2078666191 cites W2064494070 @default.
- W2078666191 cites W2079753165 @default.
- W2078666191 cites W2082235882 @default.
- W2078666191 cites W2085189255 @default.
- W2078666191 cites W2085320170 @default.
- W2078666191 cites W2086722250 @default.
- W2078666191 cites W2086798998 @default.
- W2078666191 cites W2086971829 @default.
- W2078666191 cites W2088283861 @default.
- W2078666191 cites W2089435498 @default.
- W2078666191 cites W2092539730 @default.
- W2078666191 cites W2094273643 @default.
- W2078666191 cites W2094325935 @default.
- W2078666191 cites W2101575892 @default.
- W2078666191 cites W2112165279 @default.
- W2078666191 cites W2115797520 @default.
- W2078666191 cites W2116080962 @default.
- W2078666191 cites W2119698580 @default.
- W2078666191 cites W2121830147 @default.
- W2078666191 cites W2128459102 @default.
- W2078666191 cites W2144762499 @default.
- W2078666191 cites W2155462488 @default.
- W2078666191 cites W2157507509 @default.
- W2078666191 cites W2171581030 @default.
- W2078666191 cites W2172211086 @default.
- W2078666191 cites W23444439 @default.
- W2078666191 cites W80196953 @default.
- W2078666191 doi "https://doi.org/10.1021/ar800121r" @default.
- W2078666191 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18783255" @default.
- W2078666191 hasPublicationYear "2008" @default.
- W2078666191 type Work @default.
- W2078666191 sameAs 2078666191 @default.
- W2078666191 citedByCount "493" @default.
- W2078666191 countsByYear W20786661912012 @default.
- W2078666191 countsByYear W20786661912013 @default.
- W2078666191 countsByYear W20786661912014 @default.
- W2078666191 countsByYear W20786661912015 @default.
- W2078666191 countsByYear W20786661912016 @default.
- W2078666191 countsByYear W20786661912017 @default.
- W2078666191 countsByYear W20786661912018 @default.
- W2078666191 countsByYear W20786661912019 @default.
- W2078666191 countsByYear W20786661912020 @default.
- W2078666191 countsByYear W20786661912021 @default.
- W2078666191 countsByYear W20786661912022 @default.
- W2078666191 countsByYear W20786661912023 @default.
- W2078666191 crossrefType "journal-article" @default.
- W2078666191 hasAuthorship W2078666191A5012651049 @default.
- W2078666191 hasConcept C110879396 @default.
- W2078666191 hasConcept C120665830 @default.
- W2078666191 hasConcept C121332964 @default.
- W2078666191 hasConcept C14158195 @default.
- W2078666191 hasConcept C159467904 @default.
- W2078666191 hasConcept C169573571 @default.
- W2078666191 hasConcept C171250308 @default.
- W2078666191 hasConcept C175854130 @default.
- W2078666191 hasConcept C178790620 @default.
- W2078666191 hasConcept C181500209 @default.
- W2078666191 hasConcept C184779094 @default.