Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078673125> ?p ?o ?g. }
- W2078673125 endingPage "3014" @default.
- W2078673125 startingPage "3014" @default.
- W2078673125 abstract "Nano-strengthening by employing nanoparticles is necessary for high-efficiency strengthening of elastomers, which has already been validated by numerous researches and industrial applications, but the underlying mechanism is still an open challenge. In this work, we mainly focus our attention on studying the variation of the tensile strength of nanofilled elastomers by gradually increasing the filler content, within a low loading range. Interestingly, the percolation phenomenon is observed in the relationship between the tensile strength and the filler loading, which shares some similarities with the percolation phenomenon occurring in rubber toughened plastics. That is, as the loading of nanofillers (carbon black, zinc oxide) increases, the tensile strength of rubber nanocomposites (SBR, EPDM) increases slowly at first, then increases abruptly and finally levels off. Meanwhile, the bigger the particle size, the higher the filler content at the percolation point, and the lower the corresponding tensile strength of rubber nanocomposites. The concept of a critical particle–particle distance (CPD) is proposed to explain the observed percolation phenomenon. It is suggested that rubber strengthening through nanoparticles is attributed to the formation of stretched straight polymer chains between neighbor particles, induced by the slippage of adsorbed polymer chains on the filler surface during tension. Meanwhile, the factors to govern this CPD and the critical minimum particle size (CMPS) figured out in this work are both discussed and analyzed in detail. Within the framework of this percolation phenomenon, this paper also clearly answers two important and intriguing issues: (1) why is it necessary and essential to strengthen elastomers through nanofillers; (2) why does it need enough loading of nanofillers to effectively strengthen elastomers. Moreover, on the basis of the percolation phenomenon, we give out some guidance for reinforcement design of rubbery materials: the interfacial interactions between rubber and fillers cannot be complete chemical bonding, and partial physical absorption of macromolecular chains on the filler surface is necessary, otherwise the formation of stretched straight chains would be seriously hindered. There should exist such an optimum crosslinking density for a certain filler reinforced rubber system, and as well an optimum filler loading for rubber strengthening. Additionally, the different percolation behaviors of Young’s modulus, the tensile strength and the electrical conductivity are compared and analyzed in our work. Lastly, molecular simulation indicates that it is not possible to strengthen glassy or hard polymer matrices by incorporating spherical nanoparticles. In general, by providing substantial experimental data and detailed analyses, this work is believed to promote the fundamental understanding of rubber reinforcement, as well provide better guidance for the design of high-performance and multi-functional rubber nanocomposites." @default.
- W2078673125 created "2016-06-24" @default.
- W2078673125 creator A5046292833 @default.
- W2078673125 creator A5048592635 @default.
- W2078673125 creator A5052359429 @default.
- W2078673125 creator A5074094490 @default.
- W2078673125 creator A5087559484 @default.
- W2078673125 date "2010-01-01" @default.
- W2078673125 modified "2023-10-18" @default.
- W2078673125 title "Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers" @default.
- W2078673125 cites W1967624528 @default.
- W2078673125 cites W1968077201 @default.
- W2078673125 cites W1977225912 @default.
- W2078673125 cites W1982131599 @default.
- W2078673125 cites W1982642249 @default.
- W2078673125 cites W1983641224 @default.
- W2078673125 cites W1984097548 @default.
- W2078673125 cites W1985954487 @default.
- W2078673125 cites W1989884592 @default.
- W2078673125 cites W1992857368 @default.
- W2078673125 cites W1997010589 @default.
- W2078673125 cites W2001588857 @default.
- W2078673125 cites W2002899682 @default.
- W2078673125 cites W2003294913 @default.
- W2078673125 cites W2004369921 @default.
- W2078673125 cites W2005511156 @default.
- W2078673125 cites W2007245732 @default.
- W2078673125 cites W2011883436 @default.
- W2078673125 cites W2013279757 @default.
- W2078673125 cites W2014811874 @default.
- W2078673125 cites W2017182404 @default.
- W2078673125 cites W2019693219 @default.
- W2078673125 cites W2026082418 @default.
- W2078673125 cites W2028202620 @default.
- W2078673125 cites W2035810610 @default.
- W2078673125 cites W2036169567 @default.
- W2078673125 cites W2040996330 @default.
- W2078673125 cites W2042773037 @default.
- W2078673125 cites W2044933618 @default.
- W2078673125 cites W2054407950 @default.
- W2078673125 cites W2056086328 @default.
- W2078673125 cites W2059016758 @default.
- W2078673125 cites W2059251787 @default.
- W2078673125 cites W2063085501 @default.
- W2078673125 cites W2063207236 @default.
- W2078673125 cites W2069719711 @default.
- W2078673125 cites W2071468589 @default.
- W2078673125 cites W2072604688 @default.
- W2078673125 cites W2075430727 @default.
- W2078673125 cites W2075497015 @default.
- W2078673125 cites W2075948463 @default.
- W2078673125 cites W2076969459 @default.
- W2078673125 cites W2078815806 @default.
- W2078673125 cites W2085524801 @default.
- W2078673125 cites W2085622897 @default.
- W2078673125 cites W2086054963 @default.
- W2078673125 cites W2088551312 @default.
- W2078673125 cites W2089194225 @default.
- W2078673125 cites W2093830914 @default.
- W2078673125 cites W2095021277 @default.
- W2078673125 cites W2095141733 @default.
- W2078673125 cites W2102741032 @default.
- W2078673125 cites W2109958728 @default.
- W2078673125 cites W2119469393 @default.
- W2078673125 cites W2121608446 @default.
- W2078673125 cites W2129297308 @default.
- W2078673125 cites W2137000211 @default.
- W2078673125 cites W2137061046 @default.
- W2078673125 cites W2177264656 @default.
- W2078673125 cites W2235454381 @default.
- W2078673125 cites W2236693206 @default.
- W2078673125 cites W2247444323 @default.
- W2078673125 cites W2258503972 @default.
- W2078673125 cites W2331529944 @default.
- W2078673125 cites W4255394245 @default.
- W2078673125 cites W2526913420 @default.
- W2078673125 doi "https://doi.org/10.1039/b919789c" @default.
- W2078673125 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20449394" @default.
- W2078673125 hasPublicationYear "2010" @default.
- W2078673125 type Work @default.
- W2078673125 sameAs 2078673125 @default.
- W2078673125 citedByCount "198" @default.
- W2078673125 countsByYear W20786731252012 @default.
- W2078673125 countsByYear W20786731252013 @default.
- W2078673125 countsByYear W20786731252014 @default.
- W2078673125 countsByYear W20786731252015 @default.
- W2078673125 countsByYear W20786731252016 @default.
- W2078673125 countsByYear W20786731252017 @default.
- W2078673125 countsByYear W20786731252018 @default.
- W2078673125 countsByYear W20786731252019 @default.
- W2078673125 countsByYear W20786731252020 @default.
- W2078673125 countsByYear W20786731252021 @default.
- W2078673125 countsByYear W20786731252022 @default.
- W2078673125 countsByYear W20786731252023 @default.
- W2078673125 crossrefType "journal-article" @default.
- W2078673125 hasAuthorship W2078673125A5046292833 @default.
- W2078673125 hasAuthorship W2078673125A5048592635 @default.
- W2078673125 hasAuthorship W2078673125A5052359429 @default.