Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078697068> ?p ?o ?g. }
- W2078697068 endingPage "175" @default.
- W2078697068 startingPage "165" @default.
- W2078697068 abstract "Proteins of known structures are usually classified into four structural classes: all-alpha, all-beta, alpha+beta, and alpha/beta type of proteins. A number of methods to predicting the structural class of a protein based on its amino acid composition have been developed during the past few years. Recently, a component-coupled method was developed for predicting protein structural class according to amino acid composition. This method is based on the least Mahalanobis distance principle, and yields much better predicted results in comparison with the previous methods. However, the success rates reported for structural class prediction by different investigators are contradictory. The highest reported accuracies by this method are near 100%, but the lowest one is only about 60%. The goal of this study is to resolve this paradox and to determine the possible upper limit of prediction rate for structural classes. In this paper, based on the normality assumption and the Bayes decision rule for minimum error, a new method is proposed for predicting the structural class of a protein according to its amino acid composition. The detailed theoretical analysis indicates that if the four protein folding classes are governed by the normal distributions, the present method will yield the optimum predictive result in a statistical sense. A non-redundant data set of 1,189 protein domains is used to evaluate the performance of the new method. Our results demonstrate that 60% correctness is the upper limit for a 4-type class prediction from amino acid composition alone for an unknown query protein. The apparent relatively high accuracy level (more than 90%) attained in the previous studies was due to the preselection of test sets, which may not be adequately representative of all unrelated proteins." @default.
- W2078697068 created "2016-06-24" @default.
- W2078697068 creator A5020651996 @default.
- W2078697068 creator A5030398519 @default.
- W2078697068 date "2000-02-01" @default.
- W2078697068 modified "2023-09-29" @default.
- W2078697068 title "How good is prediction of protein structural class by the component-coupled method?" @default.
- W2078697068 cites W1570770065 @default.
- W2078697068 cites W1588131283 @default.
- W2078697068 cites W1821507858 @default.
- W2078697068 cites W1985818354 @default.
- W2078697068 cites W1989447327 @default.
- W2078697068 cites W1998723057 @default.
- W2078697068 cites W1999102655 @default.
- W2078697068 cites W2007569291 @default.
- W2078697068 cites W2008708467 @default.
- W2078697068 cites W2031848873 @default.
- W2078697068 cites W2035066314 @default.
- W2078697068 cites W2054272452 @default.
- W2078697068 cites W2067305692 @default.
- W2078697068 cites W2067918411 @default.
- W2078697068 cites W2074235299 @default.
- W2078697068 cites W2084404717 @default.
- W2078697068 cites W2095515048 @default.
- W2078697068 cites W2099254366 @default.
- W2078697068 cites W2099302461 @default.
- W2078697068 cites W2108432201 @default.
- W2078697068 cites W2120026469 @default.
- W2078697068 cites W2142114994 @default.
- W2078697068 cites W2144103325 @default.
- W2078697068 cites W2157975034 @default.
- W2078697068 cites W2163965664 @default.
- W2078697068 cites W2167656653 @default.
- W2078697068 cites W2171901005 @default.
- W2078697068 cites W29708951 @default.
- W2078697068 cites W4250384461 @default.
- W2078697068 doi "https://doi.org/10.1002/(sici)1097-0134(20000201)38:2<165::aid-prot5>3.0.co;2-v" @default.
- W2078697068 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10656263" @default.
- W2078697068 hasPublicationYear "2000" @default.
- W2078697068 type Work @default.
- W2078697068 sameAs 2078697068 @default.
- W2078697068 citedByCount "138" @default.
- W2078697068 countsByYear W20786970682012 @default.
- W2078697068 countsByYear W20786970682013 @default.
- W2078697068 countsByYear W20786970682014 @default.
- W2078697068 countsByYear W20786970682015 @default.
- W2078697068 countsByYear W20786970682016 @default.
- W2078697068 countsByYear W20786970682017 @default.
- W2078697068 countsByYear W20786970682018 @default.
- W2078697068 countsByYear W20786970682019 @default.
- W2078697068 countsByYear W20786970682021 @default.
- W2078697068 countsByYear W20786970682022 @default.
- W2078697068 countsByYear W20786970682023 @default.
- W2078697068 crossrefType "journal-article" @default.
- W2078697068 hasAuthorship W2078697068A5020651996 @default.
- W2078697068 hasAuthorship W2078697068A5030398519 @default.
- W2078697068 hasConcept C105795698 @default.
- W2078697068 hasConcept C107673813 @default.
- W2078697068 hasConcept C11413529 @default.
- W2078697068 hasConcept C121332964 @default.
- W2078697068 hasConcept C168167062 @default.
- W2078697068 hasConcept C18051474 @default.
- W2078697068 hasConcept C185592680 @default.
- W2078697068 hasConcept C1921717 @default.
- W2078697068 hasConcept C204328495 @default.
- W2078697068 hasConcept C207201462 @default.
- W2078697068 hasConcept C2776157432 @default.
- W2078697068 hasConcept C2779138802 @default.
- W2078697068 hasConcept C2780362125 @default.
- W2078697068 hasConcept C33923547 @default.
- W2078697068 hasConcept C41008148 @default.
- W2078697068 hasConcept C47701112 @default.
- W2078697068 hasConcept C515207424 @default.
- W2078697068 hasConcept C55439883 @default.
- W2078697068 hasConcept C55493867 @default.
- W2078697068 hasConcept C97355855 @default.
- W2078697068 hasConceptScore W2078697068C105795698 @default.
- W2078697068 hasConceptScore W2078697068C107673813 @default.
- W2078697068 hasConceptScore W2078697068C11413529 @default.
- W2078697068 hasConceptScore W2078697068C121332964 @default.
- W2078697068 hasConceptScore W2078697068C168167062 @default.
- W2078697068 hasConceptScore W2078697068C18051474 @default.
- W2078697068 hasConceptScore W2078697068C185592680 @default.
- W2078697068 hasConceptScore W2078697068C1921717 @default.
- W2078697068 hasConceptScore W2078697068C204328495 @default.
- W2078697068 hasConceptScore W2078697068C207201462 @default.
- W2078697068 hasConceptScore W2078697068C2776157432 @default.
- W2078697068 hasConceptScore W2078697068C2779138802 @default.
- W2078697068 hasConceptScore W2078697068C2780362125 @default.
- W2078697068 hasConceptScore W2078697068C33923547 @default.
- W2078697068 hasConceptScore W2078697068C41008148 @default.
- W2078697068 hasConceptScore W2078697068C47701112 @default.
- W2078697068 hasConceptScore W2078697068C515207424 @default.
- W2078697068 hasConceptScore W2078697068C55439883 @default.
- W2078697068 hasConceptScore W2078697068C55493867 @default.
- W2078697068 hasConceptScore W2078697068C97355855 @default.
- W2078697068 hasIssue "2" @default.
- W2078697068 hasLocation W20786970681 @default.