Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078697227> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2078697227 endingPage "27" @default.
- W2078697227 startingPage "15" @default.
- W2078697227 abstract "Efficient sensor network design requires a full understanding of the geometric environment in which sensor nodes are deployed. In practice, a large-scale sensor network often has a complex and irregular topology, possibly containing obstacles/holes. Convex network partitioning, also known as convex segmentation, is a technique to divide a network into convex regions in which traditional algorithms designed for a simple network geometry can be applied. Existing segmentation algorithms heavily depend on concave node detection, or sink extraction from the median axis/skeleton, resulting in sensitivity of performance to network boundary noise. Furthermore, since they rely on the network's 2-D geometric properties, they do not work for 3-D cases. This paper presents a novel segmentation approach based on Morse function, bringing together the notions of convex components and the Reeb graph of a network. The segmentation is realized by a distributed and scalable algorithm, named CONSEL, for CONnectivity-based SEgmentation in Large-scale 2-D/3-D sensor networks. In CONSEL, several boundary nodes first flood the network to construct the Reeb graph. The ordinary nodes then compute mutex pairs locally, generating a coarse segmentation. Next, neighboring regions that are not mutex pairs are merged together. Finally, by ignoring mutex pairs that lead to small concavity, we provide an approximate convex decomposition. CONSEL has a number of advantages over previous solutions: 1) it works for both 2-D and 3-D sensor networks; 2) it uses merely network connectivity information; 3) it guarantees a bound for the generated regions' deviation from convexity. We further propose to integrate network segmentation with existing applications that are oriented to simple network geometry. Extensive simulations show the efficacy of CONSEL in segmenting networks and in improving the performance of two applications: geographic routing and connectivity-based localization." @default.
- W2078697227 created "2016-06-24" @default.
- W2078697227 creator A5015581434 @default.
- W2078697227 creator A5053547414 @default.
- W2078697227 creator A5061448582 @default.
- W2078697227 creator A5062708755 @default.
- W2078697227 creator A5074641183 @default.
- W2078697227 date "2015-02-01" @default.
- W2078697227 modified "2023-09-27" @default.
- W2078697227 title "Connectivity-Based Segmentation in Large-Scale 2-D/3-D Sensor Networks: Algorithm and Applications" @default.
- W2078697227 cites W1809711019 @default.
- W2078697227 cites W1973633235 @default.
- W2078697227 cites W1974124424 @default.
- W2078697227 cites W1979533458 @default.
- W2078697227 cites W1989651117 @default.
- W2078697227 cites W1992227230 @default.
- W2078697227 cites W1994709089 @default.
- W2078697227 cites W1998317593 @default.
- W2078697227 cites W2054030867 @default.
- W2078697227 cites W2056711730 @default.
- W2078697227 cites W2065408187 @default.
- W2078697227 cites W2071556019 @default.
- W2078697227 cites W2077007971 @default.
- W2078697227 cites W2085463780 @default.
- W2078697227 cites W2090743253 @default.
- W2078697227 cites W2101963262 @default.
- W2078697227 cites W2104855978 @default.
- W2078697227 cites W2109294133 @default.
- W2078697227 cites W2115021923 @default.
- W2078697227 cites W2121643940 @default.
- W2078697227 cites W2129005223 @default.
- W2078697227 cites W2144246237 @default.
- W2078697227 cites W2164824354 @default.
- W2078697227 cites W2166427957 @default.
- W2078697227 cites W2170195314 @default.
- W2078697227 cites W4205343085 @default.
- W2078697227 cites W4230136419 @default.
- W2078697227 doi "https://doi.org/10.1109/tnet.2013.2289912" @default.
- W2078697227 hasPublicationYear "2015" @default.
- W2078697227 type Work @default.
- W2078697227 sameAs 2078697227 @default.
- W2078697227 citedByCount "10" @default.
- W2078697227 countsByYear W20786972272015 @default.
- W2078697227 countsByYear W20786972272016 @default.
- W2078697227 countsByYear W20786972272017 @default.
- W2078697227 countsByYear W20786972272019 @default.
- W2078697227 countsByYear W20786972272021 @default.
- W2078697227 crossrefType "journal-article" @default.
- W2078697227 hasAuthorship W2078697227A5015581434 @default.
- W2078697227 hasAuthorship W2078697227A5053547414 @default.
- W2078697227 hasAuthorship W2078697227A5061448582 @default.
- W2078697227 hasAuthorship W2078697227A5062708755 @default.
- W2078697227 hasAuthorship W2078697227A5074641183 @default.
- W2078697227 hasConcept C112680207 @default.
- W2078697227 hasConcept C11413529 @default.
- W2078697227 hasConcept C114614502 @default.
- W2078697227 hasConcept C124504099 @default.
- W2078697227 hasConcept C154945302 @default.
- W2078697227 hasConcept C184720557 @default.
- W2078697227 hasConcept C2524010 @default.
- W2078697227 hasConcept C33923547 @default.
- W2078697227 hasConcept C41008148 @default.
- W2078697227 hasConcept C48044578 @default.
- W2078697227 hasConcept C5134670 @default.
- W2078697227 hasConcept C77088390 @default.
- W2078697227 hasConcept C89600930 @default.
- W2078697227 hasConceptScore W2078697227C112680207 @default.
- W2078697227 hasConceptScore W2078697227C11413529 @default.
- W2078697227 hasConceptScore W2078697227C114614502 @default.
- W2078697227 hasConceptScore W2078697227C124504099 @default.
- W2078697227 hasConceptScore W2078697227C154945302 @default.
- W2078697227 hasConceptScore W2078697227C184720557 @default.
- W2078697227 hasConceptScore W2078697227C2524010 @default.
- W2078697227 hasConceptScore W2078697227C33923547 @default.
- W2078697227 hasConceptScore W2078697227C41008148 @default.
- W2078697227 hasConceptScore W2078697227C48044578 @default.
- W2078697227 hasConceptScore W2078697227C5134670 @default.
- W2078697227 hasConceptScore W2078697227C77088390 @default.
- W2078697227 hasConceptScore W2078697227C89600930 @default.
- W2078697227 hasIssue "1" @default.
- W2078697227 hasLocation W20786972271 @default.
- W2078697227 hasOpenAccess W2078697227 @default.
- W2078697227 hasPrimaryLocation W20786972271 @default.
- W2078697227 hasRelatedWork W1969141432 @default.
- W2078697227 hasRelatedWork W1970018890 @default.
- W2078697227 hasRelatedWork W2015474943 @default.
- W2078697227 hasRelatedWork W2050585661 @default.
- W2078697227 hasRelatedWork W2092484105 @default.
- W2078697227 hasRelatedWork W2150828754 @default.
- W2078697227 hasRelatedWork W2295607224 @default.
- W2078697227 hasRelatedWork W2340908275 @default.
- W2078697227 hasRelatedWork W2526334639 @default.
- W2078697227 hasRelatedWork W2540054861 @default.
- W2078697227 hasVolume "23" @default.
- W2078697227 isParatext "false" @default.
- W2078697227 isRetracted "false" @default.
- W2078697227 magId "2078697227" @default.
- W2078697227 workType "article" @default.