Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078718287> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2078718287 endingPage "16" @default.
- W2078718287 startingPage "1" @default.
- W2078718287 abstract "Kernel ridge regression is a technique to perform ridge regression with a potentially infinite number of nonlinear transformations of the independent variables as regressors. This method is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. The influence of the choice of kernel and the setting of tuning parameters on forecast accuracy is investigated. Several popular kernels are reviewed, including polynomial kernels, the Gaussian kernel, and the Sinc kernel. The latter two kernels are interpreted in terms of their smoothing properties, and the tuning parameters associated to all these kernels are related to smoothness measures of the prediction function and to the signal-to-noise ratio. Based on these interpretations, guidelines are provided for selecting the tuning parameters from small grids using cross-validation. A Monte Carlo study confirms the practical usefulness of these rules of thumb. Finally, the flexible and smooth functional forms provided by the Gaussian and Sinc kernels make them widely applicable. Therefore, their use is recommended instead of the popular polynomial kernels in general settings, where no information on the data-generating process is available." @default.
- W2078718287 created "2016-06-24" @default.
- W2078718287 creator A5022223519 @default.
- W2078718287 date "2013-12-01" @default.
- W2078718287 modified "2023-09-24" @default.
- W2078718287 title "Model selection in kernel ridge regression" @default.
- W2078718287 cites W1493879008 @default.
- W2078718287 cites W1534230815 @default.
- W2078718287 cites W1555341301 @default.
- W2078718287 cites W1964319030 @default.
- W2078718287 cites W1986280275 @default.
- W2078718287 cites W1986328771 @default.
- W2078718287 cites W1994897986 @default.
- W2078718287 cites W2001201621 @default.
- W2078718287 cites W2007154098 @default.
- W2078718287 cites W2014158063 @default.
- W2078718287 cites W2015904350 @default.
- W2078718287 cites W2038601479 @default.
- W2078718287 cites W2060173250 @default.
- W2078718287 cites W2069618050 @default.
- W2078718287 cites W2074682976 @default.
- W2078718287 cites W2093597309 @default.
- W2078718287 cites W2112650069 @default.
- W2078718287 cites W2140095548 @default.
- W2078718287 cites W2162836072 @default.
- W2078718287 cites W3023877248 @default.
- W2078718287 cites W3101749733 @default.
- W2078718287 cites W3125239845 @default.
- W2078718287 doi "https://doi.org/10.1016/j.csda.2013.06.006" @default.
- W2078718287 hasPublicationYear "2013" @default.
- W2078718287 type Work @default.
- W2078718287 sameAs 2078718287 @default.
- W2078718287 citedByCount "30" @default.
- W2078718287 countsByYear W20787182872014 @default.
- W2078718287 countsByYear W20787182872015 @default.
- W2078718287 countsByYear W20787182872016 @default.
- W2078718287 countsByYear W20787182872018 @default.
- W2078718287 countsByYear W20787182872019 @default.
- W2078718287 countsByYear W20787182872020 @default.
- W2078718287 countsByYear W20787182872022 @default.
- W2078718287 countsByYear W20787182872023 @default.
- W2078718287 crossrefType "journal-article" @default.
- W2078718287 hasAuthorship W2078718287A5022223519 @default.
- W2078718287 hasBestOaLocation W20787182872 @default.
- W2078718287 hasConcept C105795698 @default.
- W2078718287 hasConcept C114614502 @default.
- W2078718287 hasConcept C149782125 @default.
- W2078718287 hasConcept C154945302 @default.
- W2078718287 hasConcept C200695384 @default.
- W2078718287 hasConcept C205649164 @default.
- W2078718287 hasConcept C32277403 @default.
- W2078718287 hasConcept C33923547 @default.
- W2078718287 hasConcept C41008148 @default.
- W2078718287 hasConcept C58640448 @default.
- W2078718287 hasConcept C74193536 @default.
- W2078718287 hasConcept C81917197 @default.
- W2078718287 hasConcept C83546350 @default.
- W2078718287 hasConcept C93959086 @default.
- W2078718287 hasConceptScore W2078718287C105795698 @default.
- W2078718287 hasConceptScore W2078718287C114614502 @default.
- W2078718287 hasConceptScore W2078718287C149782125 @default.
- W2078718287 hasConceptScore W2078718287C154945302 @default.
- W2078718287 hasConceptScore W2078718287C200695384 @default.
- W2078718287 hasConceptScore W2078718287C205649164 @default.
- W2078718287 hasConceptScore W2078718287C32277403 @default.
- W2078718287 hasConceptScore W2078718287C33923547 @default.
- W2078718287 hasConceptScore W2078718287C41008148 @default.
- W2078718287 hasConceptScore W2078718287C58640448 @default.
- W2078718287 hasConceptScore W2078718287C74193536 @default.
- W2078718287 hasConceptScore W2078718287C81917197 @default.
- W2078718287 hasConceptScore W2078718287C83546350 @default.
- W2078718287 hasConceptScore W2078718287C93959086 @default.
- W2078718287 hasFunder F4320320943 @default.
- W2078718287 hasFunder F4320322928 @default.
- W2078718287 hasLocation W20787182871 @default.
- W2078718287 hasLocation W20787182872 @default.
- W2078718287 hasOpenAccess W2078718287 @default.
- W2078718287 hasPrimaryLocation W20787182871 @default.
- W2078718287 hasRelatedWork W1978100 @default.
- W2078718287 hasRelatedWork W2090744688 @default.
- W2078718287 hasRelatedWork W2380269550 @default.
- W2078718287 hasRelatedWork W2900492822 @default.
- W2078718287 hasRelatedWork W2949555605 @default.
- W2078718287 hasRelatedWork W3021457118 @default.
- W2078718287 hasRelatedWork W3118641393 @default.
- W2078718287 hasRelatedWork W3215287305 @default.
- W2078718287 hasRelatedWork W1969707370 @default.
- W2078718287 hasRelatedWork W2126547731 @default.
- W2078718287 hasVolume "68" @default.
- W2078718287 isParatext "false" @default.
- W2078718287 isRetracted "false" @default.
- W2078718287 magId "2078718287" @default.
- W2078718287 workType "article" @default.