Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078751588> ?p ?o ?g. }
- W2078751588 endingPage "584" @default.
- W2078751588 startingPage "561" @default.
- W2078751588 abstract "The recently presented theory of microvillar Ca(2+)signaling [Lange, K. (1999) J. Cell. Physiol.180, 19-35], combined with Manning's theory of condensed counterions in linear polyelectrolytes [Manning, G. S. (1969). J. Chem. Phys.51, 924-931] and the finding of cable-like ion conductance in actin filaments [Lin, E. C. & Cantiello, H. F. (1993). Biophys. J.65, 1371-1378], allows a systematic interpretation of the role of the actin cytoskeleton in ion channel regulation. Ion conduction through actin filament bundles of microvilli exhibits unique nonlinear transmission properties some of which closely resemble that of electronic semiconductors: (1) bundles of microfilaments display significant resistance to cation conduction and (2) this resistance is decreased by supply of additional energy either as thermal, mechanical or electromagnetic field energy. Other transmission properties, however, are unique for ionic conduction in polyelectrolytes. (1) Current pulses injected into the filaments were transformed into oscillating currents or even into several discrete charge pulses closely resembling that of single-channel recordings. Discontinuous transmission is due to the existence of counterion clouds along the fixed anionic charge centers of the polymer, each acting as an ionic capacitor. (2) The conductivity of linear polyelectrolytes strongly decreases with the charge number of the counterions; thus, Ca(2+)and Mg(2+)are effective modulator of charge transfer through linear polyelectrolytes. Field-dependent formation of divalent cation plugs on either side of the microvillar conduction line may generate the characteristic gating behavior of cation channels. (3) Mechanical movement of actin filament bundles, e.g. bending of hair cell microvilli, generates charge translocations along the filament structure (mechano-electrical coupling). (4) Energy of external fields, by inducing molecular dipoles within the polyelectrolyte matrix, can be transformed into mechanical movement of the system (electro-mechanical coupling). Because ionic transmission through linear polyelectrolytes is very slow compared with electronic conduction, only low-frequency electromagnetic fields can interact with the condensed counterion systems of linear polyelectrolytes. The delineated characteristics of microvillar ion conduction are strongly supported by the phenomenon of electro-mechanical coupling (reverse transduction) in microvilli of the audioreceptor (hair) cells and the recently reported dynamics of Ca(2+)signaling in microvilli of audio- and photoreceptor cells. Due to the cell-specific expression of different types and combinations of ion channels and transporters in the microvillar tip membrane of differentiated cells, the functional properties of this cell surface organelle are highly variable serving a multitude of different cellular functions including receptor-mediated effects such as Ca(2+)signaling, regulation of glucose and amino acid transport, as well as modulation of membrane potential. Even mechanical channel activation involved in cell volume regulation can be deduced from the systematic properties of the microvillar channel concept. In addition, the specific ion conduction properties of microfilaments combined with their proposed role in Ca(2+)signaling make microvilli the most likely cellular site for the interaction with external electric and magnetic fields." @default.
- W2078751588 created "2016-06-24" @default.
- W2078751588 creator A5041092543 @default.
- W2078751588 date "2000-10-01" @default.
- W2078751588 modified "2023-10-13" @default.
- W2078751588 title "Microvillar Ion Channels: Cytoskeletal Modulation of Ion Fluxes" @default.
- W2078751588 cites W1552146823 @default.
- W2078751588 cites W1579765465 @default.
- W2078751588 cites W1580075072 @default.
- W2078751588 cites W1603982316 @default.
- W2078751588 cites W1647773117 @default.
- W2078751588 cites W1798552829 @default.
- W2078751588 cites W1915865029 @default.
- W2078751588 cites W1965924227 @default.
- W2078751588 cites W1967943085 @default.
- W2078751588 cites W1968201974 @default.
- W2078751588 cites W1969996729 @default.
- W2078751588 cites W1970832778 @default.
- W2078751588 cites W1975884255 @default.
- W2078751588 cites W1976455171 @default.
- W2078751588 cites W1977910448 @default.
- W2078751588 cites W1978197596 @default.
- W2078751588 cites W1979312704 @default.
- W2078751588 cites W1979625216 @default.
- W2078751588 cites W1982419146 @default.
- W2078751588 cites W1982706640 @default.
- W2078751588 cites W1983268084 @default.
- W2078751588 cites W1983836773 @default.
- W2078751588 cites W1984531383 @default.
- W2078751588 cites W1984950565 @default.
- W2078751588 cites W1988455457 @default.
- W2078751588 cites W1990076174 @default.
- W2078751588 cites W1990539421 @default.
- W2078751588 cites W1999633797 @default.
- W2078751588 cites W2006023356 @default.
- W2078751588 cites W2010955080 @default.
- W2078751588 cites W2011777928 @default.
- W2078751588 cites W2011918881 @default.
- W2078751588 cites W2016393620 @default.
- W2078751588 cites W2020434641 @default.
- W2078751588 cites W2020645947 @default.
- W2078751588 cites W2020763130 @default.
- W2078751588 cites W2021002124 @default.
- W2078751588 cites W2022129165 @default.
- W2078751588 cites W2023375965 @default.
- W2078751588 cites W2023965702 @default.
- W2078751588 cites W2025571851 @default.
- W2078751588 cites W2029583949 @default.
- W2078751588 cites W2033375071 @default.
- W2078751588 cites W2034104741 @default.
- W2078751588 cites W2036064476 @default.
- W2078751588 cites W2036153068 @default.
- W2078751588 cites W2036203264 @default.
- W2078751588 cites W2039230181 @default.
- W2078751588 cites W2039606438 @default.
- W2078751588 cites W2041114848 @default.
- W2078751588 cites W2044415802 @default.
- W2078751588 cites W2044731337 @default.
- W2078751588 cites W2045931354 @default.
- W2078751588 cites W2050759207 @default.
- W2078751588 cites W2052811964 @default.
- W2078751588 cites W2055252729 @default.
- W2078751588 cites W2055540880 @default.
- W2078751588 cites W2057912551 @default.
- W2078751588 cites W2058061580 @default.
- W2078751588 cites W2059107078 @default.
- W2078751588 cites W2060933342 @default.
- W2078751588 cites W2061745903 @default.
- W2078751588 cites W2061780012 @default.
- W2078751588 cites W2063810099 @default.
- W2078751588 cites W2064129017 @default.
- W2078751588 cites W2064434506 @default.
- W2078751588 cites W2068861883 @default.
- W2078751588 cites W2071790834 @default.
- W2078751588 cites W2074045232 @default.
- W2078751588 cites W2077318355 @default.
- W2078751588 cites W2077342384 @default.
- W2078751588 cites W2078539894 @default.
- W2078751588 cites W2078835916 @default.
- W2078751588 cites W2080246335 @default.
- W2078751588 cites W2080377358 @default.
- W2078751588 cites W2081607665 @default.
- W2078751588 cites W2086827936 @default.
- W2078751588 cites W2086955015 @default.
- W2078751588 cites W2090203902 @default.
- W2078751588 cites W2100121535 @default.
- W2078751588 cites W2102402165 @default.
- W2078751588 cites W2113752311 @default.
- W2078751588 cites W2129585410 @default.
- W2078751588 cites W2130851152 @default.
- W2078751588 cites W2140774907 @default.
- W2078751588 cites W2141920387 @default.
- W2078751588 cites W2156329365 @default.
- W2078751588 cites W2166705531 @default.
- W2078751588 cites W2178701884 @default.
- W2078751588 cites W2303887268 @default.
- W2078751588 cites W2396035301 @default.
- W2078751588 cites W2408906795 @default.