Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078785469> ?p ?o ?g. }
- W2078785469 endingPage "247" @default.
- W2078785469 startingPage "235" @default.
- W2078785469 abstract "•Mathematical models and genomic data provide new insights into microbial speciation. •Adaptive genes can either spread within populations or trigger genome-wide sweeps. •Formation of new genotypic clusters in sympatry requires (microgeographic) gene flow barriers. •If arisen in sympatry, genotypic clusters represent congruent ecological and genetic units. We propose that microbial diversity must be viewed in light of gene flow and selection, which define units of genetic similarity, and of phenotype and ecological function, respectively. We discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and on evidence from some of the first microbial populations studied with genomics. These show that if recombination is frequent and selection moderate, ecologically adaptive mutations or genes can spread within populations independently of their original genomic background (gene-specific sweeps). Alternatively, if the effect of recombination is smaller than selection, genome-wide selective sweeps should occur. In both cases, however, distinct units of overlapping ecological and genotypic similarity will form if microgeographic separation, likely involving ecological tradeoffs, induces barriers to gene flow. These predictions are supported by (meta)genomic data, which suggest that a ‘reverse ecology’ approach, in which genomic and gene flow information is used to make predictions about the nature of ecological units, is a powerful approach to ordering microbial diversity. We propose that microbial diversity must be viewed in light of gene flow and selection, which define units of genetic similarity, and of phenotype and ecological function, respectively. We discuss to what extent ecological and genetic units overlap to form cohesive populations in the wild, based on recent evolutionary modeling and on evidence from some of the first microbial populations studied with genomics. These show that if recombination is frequent and selection moderate, ecologically adaptive mutations or genes can spread within populations independently of their original genomic background (gene-specific sweeps). Alternatively, if the effect of recombination is smaller than selection, genome-wide selective sweeps should occur. In both cases, however, distinct units of overlapping ecological and genotypic similarity will form if microgeographic separation, likely involving ecological tradeoffs, induces barriers to gene flow. These predictions are supported by (meta)genomic data, which suggest that a ‘reverse ecology’ approach, in which genomic and gene flow information is used to make predictions about the nature of ecological units, is a powerful approach to ordering microbial diversity. a set of sampled isolates or genomes from different geographic areas, where barriers to migration and gene flow are significant. the portion of the genome transmitted by vertical (clonal) evolution, unimpacted by HGT. Mutations in the clonal frame should all fall parsimoniously on a single phylogenetic tree. the portion of the genome that is present (or in practice, that can be aligned) in all of a given set of sequenced isolates or metagenomes. the set of genes or DNA that is present in only a fraction of a given set of sequenced isolates or metagenomes. the process in which an adaptive gene or allele (possibly a niche-specifying variant) spreads in a population by recombination faster than by clonal expansion. The result is that the adaptive variant is present in more than a single clonal background, and that diversity is not purged genome-wide. a technique commonly used in eukaryotic genetics to identify genomic variants that are associated with a phenotype of interest. In highly structured populations (e.g., clonal microbes), it is essential to correct for false associations due to phylogenetic structure. the process in which an adaptive gene or allele (possibly a niche-specifying variant) spreads in a population by clonal expansion of the genome that first acquired it. The result is that diversity is purged genome-wide, and that the adaptive variant is linked in the same clonal frame as the rest of the genome. the incorporation of foreign DNA into a genome. Incorporation can be mediated by either homologous recombination or nonhomologous recombination of DNA that enters a cell via transformation, transduction, or conjugation. In bacteria and archaea, all gene transfer is horizontal (i.e., always unidirectional). a mechanism of DNA integration requiring at least short tracts of identity between the genome and the foreign DNA, mediated by RecA (protein necessary for DNA repair, recombination, and maintenance) and mismatch repair machinery. The integrated DNA can result in single nucleotide changes and, in some cases, addition or loss of relatively long stretches of DNA including entire genes. the total set of all genomic DNA in a particular environment or sample. a type of natural selection that favors rare phenotypes in a population. a specific set of ecological parameters (environments, resources, physical and chemical characteristics, biotic interactions, etc.) to which an organism is adapted. This does not necessarily imply (but does not exclude) physical separation between niches. a mutation, gene, or allele that allows a cell to be part of a particular niche. These variants are under positive selection within the particular niche, but not outside it. integration of DNA with no homologous allele already present in the genome, often mediated by phage and integrative elements. This results in the acquisition of entirely new genes. a group of individuals sharing genetic and ecological similarity, and coexisting in a sympatric setting. a type of natural selection that favors variants conferring a fitness advantage, causing them to increase in frequency in a population. a set of sampled isolates or genomes from the same geographic area, where barriers to migration and gene flow are low or nonexistent." @default.
- W2078785469 created "2016-06-24" @default.
- W2078785469 creator A5029276946 @default.
- W2078785469 creator A5067717492 @default.
- W2078785469 date "2014-05-01" @default.
- W2078785469 modified "2023-10-02" @default.
- W2078785469 title "Ordering microbial diversity into ecologically and genetically cohesive units" @default.
- W2078785469 cites W114293352 @default.
- W2078785469 cites W1513337501 @default.
- W2078785469 cites W1587277135 @default.
- W2078785469 cites W1711571047 @default.
- W2078785469 cites W1868768034 @default.
- W2078785469 cites W1911391407 @default.
- W2078785469 cites W195198121 @default.
- W2078785469 cites W1965352773 @default.
- W2078785469 cites W1966978997 @default.
- W2078785469 cites W1976065917 @default.
- W2078785469 cites W1982905064 @default.
- W2078785469 cites W1983335007 @default.
- W2078785469 cites W1985454324 @default.
- W2078785469 cites W1986748260 @default.
- W2078785469 cites W1991604124 @default.
- W2078785469 cites W1996888616 @default.
- W2078785469 cites W2004601902 @default.
- W2078785469 cites W2005800744 @default.
- W2078785469 cites W2008144158 @default.
- W2078785469 cites W2011877157 @default.
- W2078785469 cites W2012980277 @default.
- W2078785469 cites W2013133176 @default.
- W2078785469 cites W2014492752 @default.
- W2078785469 cites W2019944969 @default.
- W2078785469 cites W2026232375 @default.
- W2078785469 cites W2029516628 @default.
- W2078785469 cites W2030709910 @default.
- W2078785469 cites W2031581341 @default.
- W2078785469 cites W2032061457 @default.
- W2078785469 cites W2037084529 @default.
- W2078785469 cites W2038662463 @default.
- W2078785469 cites W2041579725 @default.
- W2078785469 cites W2042008515 @default.
- W2078785469 cites W2048558329 @default.
- W2078785469 cites W2049655406 @default.
- W2078785469 cites W2049671843 @default.
- W2078785469 cites W2059410416 @default.
- W2078785469 cites W2064971934 @default.
- W2078785469 cites W2065101394 @default.
- W2078785469 cites W2065212701 @default.
- W2078785469 cites W2068590569 @default.
- W2078785469 cites W2072515307 @default.
- W2078785469 cites W2077696096 @default.
- W2078785469 cites W2078420554 @default.
- W2078785469 cites W2080618984 @default.
- W2078785469 cites W2083539954 @default.
- W2078785469 cites W2084068135 @default.
- W2078785469 cites W2087150716 @default.
- W2078785469 cites W2097162882 @default.
- W2078785469 cites W2097557545 @default.
- W2078785469 cites W2097734621 @default.
- W2078785469 cites W2107070824 @default.
- W2078785469 cites W2107193710 @default.
- W2078785469 cites W2110150994 @default.
- W2078785469 cites W2113719650 @default.
- W2078785469 cites W2116599860 @default.
- W2078785469 cites W2117761900 @default.
- W2078785469 cites W2119252764 @default.
- W2078785469 cites W2121107716 @default.
- W2078785469 cites W2121560025 @default.
- W2078785469 cites W2126482672 @default.
- W2078785469 cites W2126842951 @default.
- W2078785469 cites W2128777911 @default.
- W2078785469 cites W2129769668 @default.
- W2078785469 cites W2130621427 @default.
- W2078785469 cites W2134650310 @default.
- W2078785469 cites W2135329955 @default.
- W2078785469 cites W2135764299 @default.
- W2078785469 cites W2140859203 @default.
- W2078785469 cites W2143162227 @default.
- W2078785469 cites W2143573510 @default.
- W2078785469 cites W2143913851 @default.
- W2078785469 cites W2147619435 @default.
- W2078785469 cites W2149981091 @default.
- W2078785469 cites W2150722133 @default.
- W2078785469 cites W2153139855 @default.
- W2078785469 cites W2161017872 @default.
- W2078785469 cites W2163320297 @default.
- W2078785469 cites W2163786118 @default.
- W2078785469 cites W2167368612 @default.
- W2078785469 cites W2168178166 @default.
- W2078785469 cites W2169427451 @default.
- W2078785469 cites W2170093840 @default.
- W2078785469 cites W2171197491 @default.
- W2078785469 doi "https://doi.org/10.1016/j.tim.2014.02.006" @default.
- W2078785469 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4103024" @default.
- W2078785469 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24630527" @default.
- W2078785469 hasPublicationYear "2014" @default.
- W2078785469 type Work @default.
- W2078785469 sameAs 2078785469 @default.
- W2078785469 citedByCount "150" @default.