Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078804823> ?p ?o ?g. }
- W2078804823 endingPage "101" @default.
- W2078804823 startingPage "88" @default.
- W2078804823 abstract "Similarity measures are of fundamental importance in time series data mining. Dynamic Time Warping (DTW) is a quite popular measure because it handles time distortions well. However, DTW has an inherent shortcoming in that DTW can lead to pathological alignments between time series where a single point maps onto a large subsection of another time series. To overcome this problem, we propose a novel variant of DTW named SC-DTW. SC-DTW employs shape context, a rich local shape descriptor, to replace the raw observed values considered by conventional DTW. The main novelties of SC-DTW are (1) it deeply explores both the numerical nature and shape nature of time series; and (2) neighborhood information for each point is taken into account. SC-DTW can generate a more feature-to-feature alignment between time series and thus serves as a robust similarity measure. We test the performance of SC-DTW on UCR time series datasets using the one nearest neighbor (1NN) classifier. Compared with other well-established methods, SC-DTW provides better accuracy on 24 of 34 datasets." @default.
- W2078804823 created "2016-06-24" @default.
- W2078804823 creator A5051151162 @default.
- W2078804823 creator A5084500588 @default.
- W2078804823 creator A5088888083 @default.
- W2078804823 date "2015-09-01" @default.
- W2078804823 modified "2023-10-16" @default.
- W2078804823 title "Dynamic time warping under pointwise shape context" @default.
- W2078804823 cites W1987735845 @default.
- W2078804823 cites W1997994299 @default.
- W2078804823 cites W2008348094 @default.
- W2078804823 cites W2030536784 @default.
- W2078804823 cites W2042645898 @default.
- W2078804823 cites W2045798786 @default.
- W2078804823 cites W2046316885 @default.
- W2078804823 cites W2057175746 @default.
- W2078804823 cites W2059203360 @default.
- W2078804823 cites W2059410401 @default.
- W2078804823 cites W2068179746 @default.
- W2078804823 cites W2068246225 @default.
- W2078804823 cites W2069729329 @default.
- W2078804823 cites W2074812030 @default.
- W2078804823 cites W2077811903 @default.
- W2078804823 cites W2078854400 @default.
- W2078804823 cites W2095536970 @default.
- W2078804823 cites W2097747115 @default.
- W2078804823 cites W2104135818 @default.
- W2078804823 cites W2106595237 @default.
- W2078804823 cites W2107092366 @default.
- W2078804823 cites W2108156626 @default.
- W2078804823 cites W2108556791 @default.
- W2078804823 cites W2128160875 @default.
- W2078804823 cites W2130363378 @default.
- W2078804823 cites W2132822263 @default.
- W2078804823 cites W2137089646 @default.
- W2078804823 cites W2139106564 @default.
- W2078804823 cites W2142126424 @default.
- W2078804823 cites W2145425472 @default.
- W2078804823 cites W2152756885 @default.
- W2078804823 cites W2166168249 @default.
- W2078804823 cites W2168311572 @default.
- W2078804823 cites W2171316353 @default.
- W2078804823 cites W58346954 @default.
- W2078804823 doi "https://doi.org/10.1016/j.ins.2015.04.007" @default.
- W2078804823 hasPublicationYear "2015" @default.
- W2078804823 type Work @default.
- W2078804823 sameAs 2078804823 @default.
- W2078804823 citedByCount "34" @default.
- W2078804823 countsByYear W20788048232015 @default.
- W2078804823 countsByYear W20788048232016 @default.
- W2078804823 countsByYear W20788048232017 @default.
- W2078804823 countsByYear W20788048232018 @default.
- W2078804823 countsByYear W20788048232019 @default.
- W2078804823 countsByYear W20788048232020 @default.
- W2078804823 countsByYear W20788048232021 @default.
- W2078804823 countsByYear W20788048232022 @default.
- W2078804823 countsByYear W20788048232023 @default.
- W2078804823 crossrefType "journal-article" @default.
- W2078804823 hasAuthorship W2078804823A5051151162 @default.
- W2078804823 hasAuthorship W2078804823A5084500588 @default.
- W2078804823 hasAuthorship W2078804823A5088888083 @default.
- W2078804823 hasConcept C103278499 @default.
- W2078804823 hasConcept C113238511 @default.
- W2078804823 hasConcept C115961682 @default.
- W2078804823 hasConcept C116738811 @default.
- W2078804823 hasConcept C124101348 @default.
- W2078804823 hasConcept C138885662 @default.
- W2078804823 hasConcept C143724316 @default.
- W2078804823 hasConcept C151730666 @default.
- W2078804823 hasConcept C153180895 @default.
- W2078804823 hasConcept C154945302 @default.
- W2078804823 hasConcept C2776401178 @default.
- W2078804823 hasConcept C2776517306 @default.
- W2078804823 hasConcept C2779343474 @default.
- W2078804823 hasConcept C2780009758 @default.
- W2078804823 hasConcept C41008148 @default.
- W2078804823 hasConcept C41895202 @default.
- W2078804823 hasConcept C86803240 @default.
- W2078804823 hasConcept C88516994 @default.
- W2078804823 hasConceptScore W2078804823C103278499 @default.
- W2078804823 hasConceptScore W2078804823C113238511 @default.
- W2078804823 hasConceptScore W2078804823C115961682 @default.
- W2078804823 hasConceptScore W2078804823C116738811 @default.
- W2078804823 hasConceptScore W2078804823C124101348 @default.
- W2078804823 hasConceptScore W2078804823C138885662 @default.
- W2078804823 hasConceptScore W2078804823C143724316 @default.
- W2078804823 hasConceptScore W2078804823C151730666 @default.
- W2078804823 hasConceptScore W2078804823C153180895 @default.
- W2078804823 hasConceptScore W2078804823C154945302 @default.
- W2078804823 hasConceptScore W2078804823C2776401178 @default.
- W2078804823 hasConceptScore W2078804823C2776517306 @default.
- W2078804823 hasConceptScore W2078804823C2779343474 @default.
- W2078804823 hasConceptScore W2078804823C2780009758 @default.
- W2078804823 hasConceptScore W2078804823C41008148 @default.
- W2078804823 hasConceptScore W2078804823C41895202 @default.
- W2078804823 hasConceptScore W2078804823C86803240 @default.
- W2078804823 hasConceptScore W2078804823C88516994 @default.
- W2078804823 hasFunder F4320321133 @default.