Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078840143> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2078840143 endingPage "2922" @default.
- W2078840143 startingPage "2907" @default.
- W2078840143 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a simple, separable C<inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=Superscript asterisk> <mml:semantics> <mml:msup> <mml:mi /> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:annotation encoding=application/x-tex>^*</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-algebra of stable rank one. We prove that the Cuntz semigroup of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper C left-parenthesis double-struck upper T comma upper A right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>C</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>T</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathrm {C}(mathbb {T},A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is determined by its Murray-von Neumann semigroup of projections and a certain semigroup of lower semicontinuous functions (with values in the Cuntz semigroup of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>). This result has two consequences. First, specializing to the case that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is simple, finite, separable and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper Z> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>Z</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>mathcal Z</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-stable, this yields a description of the Cuntz semigroup of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=normal upper C left-parenthesis double-struck upper T comma upper A right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=normal>C</mml:mi> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>T</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mathrm {C}(mathbb {T},A)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in terms of the Elliott invariant of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=application/x-tex>A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Second, suitably interpreted, it shows that the Elliott functor and the functor defined by the Cuntz semigroup of the tensor product with the algebra of continuous functions on the circle are naturally equivalent." @default.
- W2078840143 created "2016-06-24" @default.
- W2078840143 creator A5007803606 @default.
- W2078840143 creator A5024164296 @default.
- W2078840143 creator A5041199115 @default.
- W2078840143 creator A5046934041 @default.
- W2078840143 date "2014-02-13" @default.
- W2078840143 modified "2023-10-16" @default.
- W2078840143 title "Recovering the Elliott invariant from the Cuntz semigroup" @default.
- W2078840143 cites W1490505438 @default.
- W2078840143 cites W1525647423 @default.
- W2078840143 cites W1985060913 @default.
- W2078840143 cites W2066815608 @default.
- W2078840143 cites W2071297813 @default.
- W2078840143 cites W2087313803 @default.
- W2078840143 cites W2088870220 @default.
- W2078840143 cites W2106554665 @default.
- W2078840143 cites W2126727921 @default.
- W2078840143 cites W2129350626 @default.
- W2078840143 cites W2164167722 @default.
- W2078840143 cites W2907130663 @default.
- W2078840143 cites W2962904304 @default.
- W2078840143 cites W2963048041 @default.
- W2078840143 cites W2963456137 @default.
- W2078840143 cites W2963819596 @default.
- W2078840143 cites W2963975200 @default.
- W2078840143 cites W2964125336 @default.
- W2078840143 cites W3105000634 @default.
- W2078840143 doi "https://doi.org/10.1090/s0002-9947-2014-05833-9" @default.
- W2078840143 hasPublicationYear "2014" @default.
- W2078840143 type Work @default.
- W2078840143 sameAs 2078840143 @default.
- W2078840143 citedByCount "19" @default.
- W2078840143 countsByYear W20788401432012 @default.
- W2078840143 countsByYear W20788401432013 @default.
- W2078840143 countsByYear W20788401432014 @default.
- W2078840143 countsByYear W20788401432015 @default.
- W2078840143 countsByYear W20788401432017 @default.
- W2078840143 countsByYear W20788401432018 @default.
- W2078840143 countsByYear W20788401432019 @default.
- W2078840143 countsByYear W20788401432020 @default.
- W2078840143 countsByYear W20788401432021 @default.
- W2078840143 countsByYear W20788401432022 @default.
- W2078840143 countsByYear W20788401432023 @default.
- W2078840143 crossrefType "journal-article" @default.
- W2078840143 hasAuthorship W2078840143A5007803606 @default.
- W2078840143 hasAuthorship W2078840143A5024164296 @default.
- W2078840143 hasAuthorship W2078840143A5041199115 @default.
- W2078840143 hasAuthorship W2078840143A5046934041 @default.
- W2078840143 hasBestOaLocation W20788401431 @default.
- W2078840143 hasConcept C11413529 @default.
- W2078840143 hasConcept C118615104 @default.
- W2078840143 hasConcept C154945302 @default.
- W2078840143 hasConcept C207405024 @default.
- W2078840143 hasConcept C2776321320 @default.
- W2078840143 hasConcept C33923547 @default.
- W2078840143 hasConcept C41008148 @default.
- W2078840143 hasConceptScore W2078840143C11413529 @default.
- W2078840143 hasConceptScore W2078840143C118615104 @default.
- W2078840143 hasConceptScore W2078840143C154945302 @default.
- W2078840143 hasConceptScore W2078840143C207405024 @default.
- W2078840143 hasConceptScore W2078840143C2776321320 @default.
- W2078840143 hasConceptScore W2078840143C33923547 @default.
- W2078840143 hasConceptScore W2078840143C41008148 @default.
- W2078840143 hasIssue "6" @default.
- W2078840143 hasLocation W20788401431 @default.
- W2078840143 hasLocation W20788401432 @default.
- W2078840143 hasLocation W20788401433 @default.
- W2078840143 hasLocation W20788401434 @default.
- W2078840143 hasOpenAccess W2078840143 @default.
- W2078840143 hasPrimaryLocation W20788401431 @default.
- W2078840143 hasRelatedWork W1495941091 @default.
- W2078840143 hasRelatedWork W151193258 @default.
- W2078840143 hasRelatedWork W1529400504 @default.
- W2078840143 hasRelatedWork W1892467659 @default.
- W2078840143 hasRelatedWork W2012175556 @default.
- W2078840143 hasRelatedWork W2033503156 @default.
- W2078840143 hasRelatedWork W2116635890 @default.
- W2078840143 hasRelatedWork W2157164020 @default.
- W2078840143 hasRelatedWork W2163908831 @default.
- W2078840143 hasRelatedWork W2347742456 @default.
- W2078840143 hasVolume "366" @default.
- W2078840143 isParatext "false" @default.
- W2078840143 isRetracted "false" @default.
- W2078840143 magId "2078840143" @default.
- W2078840143 workType "article" @default.