Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078966862> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2078966862 abstract "Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DCCirculating tumor cells (CTCs) have become increasingly acceptable as a prognostic marker in stratifying metastatic cancer patients for treatment and as a predictive marker in monitoring therapeutic response. CTC enumeration is an established prognostic marker (gold standard) in metastatic prostate, breast and colorectal cancer. However, due to the heterogeneity with respect to CTC phenotypic expression, epithelial-mesenchymal transition, and morphologic variability of different cancer cells, it is impossible to simply use the counts of well defined cells to characterize a wide spectrum of cancer status and progression. In addition, manual counting of CTCs also introduces operator bias on the size, shape and expression levels. We have developed an automated CTC characterization system that extracts enumeration, cell morphology and expression level of all intact, irregular and fragmented CTCs in an automatic fashion. A multiparameter classification model was then developed to characterize patient clinical outcome. Whole blood from advanced stage cancer patients and non-diseased controls was processed through anti-EpCAM antibody coated OnQChipsTM. Chips were imaged at low magnification on a fully calibrated rapid automated platform. Captured CTC candidate events were processed by an automated CTC detection algorithm using a set of spatial and spectral features to initially remove non-cellular events and then to indentify CTC subclasses. All CTC subclasses as well as artifact classes were manually labeled and verified at high magnification by trained imaging technologists. Manual labels were used to assess performance of the automated algorithms. A multivariate model based on CART (Classification and Regression Trees) was used for the classifier development. A total of 27 prostate cancer patients and 33 normal controls with 7.5mL blood samples per patient were used to develop and validate the initial techniques. The preliminary results show that the automated CTC event detection algorithm achieved a sensitivity of 96% and specificity of 89%. The CTC subclass classification algorithm achieved classification accuracy from 82% to 95% across all subclasses. The algorithms were N-fold cross-validated with 80/20 random sampling. The preliminary clinical model achieved sensitivity and specificity values of 90% and 82% respectively for patient vs. normal classification. A method for automated patient CTC classification and clinical model has been developed. The performance data from all classification algorithms is very encouraging. The multivariate patient model discriminates cancer patients from normal donor samples with high sensitivity and specificity. Future work includes incorporation of image-based features as well as clinical patient data into the model to improve sensitivity and specificity and address specific clinical needs.Citation Format: Chunsheng Jiang, Oleg Gusyatin, David Tims, Aladin Milutinovic, Kam Sprott, Michael Stocum. Multiparameter CTC characterization using dual capture microfluidic chips. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 3507. doi:10.1158/1538-7445.AM2013-3507" @default.
- W2078966862 created "2016-06-24" @default.
- W2078966862 creator A5004563277 @default.
- W2078966862 creator A5008717726 @default.
- W2078966862 creator A5016014483 @default.
- W2078966862 creator A5039103844 @default.
- W2078966862 creator A5063053478 @default.
- W2078966862 creator A5063442683 @default.
- W2078966862 date "2013-04-15" @default.
- W2078966862 modified "2023-09-25" @default.
- W2078966862 title "Abstract 3507: Multiparameter CTC characterization using dual capture microfluidic chips." @default.
- W2078966862 doi "https://doi.org/10.1158/1538-7445.am2013-3507" @default.
- W2078966862 hasPublicationYear "2013" @default.
- W2078966862 type Work @default.
- W2078966862 sameAs 2078966862 @default.
- W2078966862 citedByCount "0" @default.
- W2078966862 crossrefType "proceedings-article" @default.
- W2078966862 hasAuthorship W2078966862A5004563277 @default.
- W2078966862 hasAuthorship W2078966862A5008717726 @default.
- W2078966862 hasAuthorship W2078966862A5016014483 @default.
- W2078966862 hasAuthorship W2078966862A5039103844 @default.
- W2078966862 hasAuthorship W2078966862A5063053478 @default.
- W2078966862 hasAuthorship W2078966862A5063442683 @default.
- W2078966862 hasConcept C121608353 @default.
- W2078966862 hasConcept C126322002 @default.
- W2078966862 hasConcept C142724271 @default.
- W2078966862 hasConcept C143998085 @default.
- W2078966862 hasConcept C2779013556 @default.
- W2078966862 hasConcept C2780192828 @default.
- W2078966862 hasConcept C502942594 @default.
- W2078966862 hasConcept C526805850 @default.
- W2078966862 hasConcept C61238886 @default.
- W2078966862 hasConcept C71924100 @default.
- W2078966862 hasConceptScore W2078966862C121608353 @default.
- W2078966862 hasConceptScore W2078966862C126322002 @default.
- W2078966862 hasConceptScore W2078966862C142724271 @default.
- W2078966862 hasConceptScore W2078966862C143998085 @default.
- W2078966862 hasConceptScore W2078966862C2779013556 @default.
- W2078966862 hasConceptScore W2078966862C2780192828 @default.
- W2078966862 hasConceptScore W2078966862C502942594 @default.
- W2078966862 hasConceptScore W2078966862C526805850 @default.
- W2078966862 hasConceptScore W2078966862C61238886 @default.
- W2078966862 hasConceptScore W2078966862C71924100 @default.
- W2078966862 hasLocation W20789668621 @default.
- W2078966862 hasOpenAccess W2078966862 @default.
- W2078966862 hasPrimaryLocation W20789668621 @default.
- W2078966862 hasRelatedWork W1605522383 @default.
- W2078966862 hasRelatedWork W2054639100 @default.
- W2078966862 hasRelatedWork W2092324113 @default.
- W2078966862 hasRelatedWork W2093160946 @default.
- W2078966862 hasRelatedWork W2120974337 @default.
- W2078966862 hasRelatedWork W2320096000 @default.
- W2078966862 hasRelatedWork W2331684137 @default.
- W2078966862 hasRelatedWork W2617997580 @default.
- W2078966862 hasRelatedWork W2769158610 @default.
- W2078966862 hasRelatedWork W2791551248 @default.
- W2078966862 hasRelatedWork W3036737582 @default.
- W2078966862 hasRelatedWork W3082666061 @default.
- W2078966862 hasRelatedWork W3112659669 @default.
- W2078966862 hasRelatedWork W3153074779 @default.
- W2078966862 hasRelatedWork W3159812430 @default.
- W2078966862 hasRelatedWork W3163590978 @default.
- W2078966862 hasRelatedWork W3204399207 @default.
- W2078966862 hasRelatedWork W3207490273 @default.
- W2078966862 hasRelatedWork W3213412908 @default.
- W2078966862 hasRelatedWork W2932648755 @default.
- W2078966862 isParatext "false" @default.
- W2078966862 isRetracted "false" @default.
- W2078966862 magId "2078966862" @default.
- W2078966862 workType "article" @default.