Matches in SemOpenAlex for { <https://semopenalex.org/work/W2078989384> ?p ?o ?g. }
- W2078989384 abstract "Motivated by recent work of Lin, Balents, and Fisher [Phys. Rev. B 58, 1794 (1998)], we compute correlation functions at zero temperature for weakly coupled two-leg Hubbard ladders and $(N,N)$ armchair carbon nanotubes. In this paper it was argued that such systems renormalize towards the SO(8) Gross-Neveu model, an integrable theory. We exploit this integrability to perform the computation at the SO(8) invariant point. Any terms breaking the SO(8) symmetry can be treated systematically in perturbation theory, leading to a model with the same qualitative features as the integrable theory. Using said correlators, we determine the optical conductivity, the single-particle spectral function, and the $Iensuremath{-}V$ curve for tunneling into the system from an external metallic lead. The frequency, ensuremath{omega}, dependent optical conductivity is determined exactly for $ensuremath{omega}<3m$ $(m$ being the fermion particle mass in the SO(8) Gross-Neveu model). It is characterized by a sharp ``exciton'' peak at $ensuremath{omega}=sqrt{3}m,$ followed by the onset of the particle-hole continuum beginning at $ensuremath{omega}=2m.$ Interactions modify this onset to $ensuremath{sigma}(ensuremath{omega}+2m)ensuremath{sim}{ensuremath{omega}}^{1/2}$ and not the ${ensuremath{omega}}^{ensuremath{-}1/2}$ one would expect from the van Hove singularity in the density of states. Similarly, we obtain the exact single-particle spectral function for energies less than $3m.$ The latter possesses a $ensuremath{delta}$ function peak arising from single-particle excitations, together with a two-particle continuum for $ensuremath{omega}>~2m.$ The final quantity we compute is the tunneling $Iensuremath{-}V$ curve to lowest nonvanishing order in the tunneling matrix elements. For this quantity, we present exact results for voltages, $V<(1+sqrt{3})m.$ The resulting differential conductance is marked by a finite jump at $ensuremath{omega}=2m,$ the energy of the onset of tunneling into the continuum of two-particle states. Through integrability, we are able to characterize this jump exactly. All calculations are done through form-factor expansions of correlation functions. These give exact closed form expressions for spectral functions because the SO(8) Gross-Neveu model is massive: each term in the expansion has an energy threshold below which it does not contribute. Thus, we obtain exact results below certain thresholds by computing a finite number of terms in this series. Previous to this paper, the only computed form factor of SO(8) Gross-Neveu was the two-particle form factor of an SO(8) current with two fundamental fermions. In this paper we compute the set of all one- and two-particle form factors for all relevant fields, the currents as well as the kinks and fermions." @default.
- W2078989384 created "2016-06-24" @default.
- W2078989384 creator A5029692744 @default.
- W2078989384 creator A5066158634 @default.
- W2078989384 date "2001-09-27" @default.
- W2078989384 modified "2023-10-16" @default.
- W2078989384 title "Exact zero-temperature correlation functions for two-leg Hubbard ladders and carbon nanotubes" @default.
- W2078989384 cites W1499968416 @default.
- W2078989384 cites W1523306402 @default.
- W2078989384 cites W1524449837 @default.
- W2078989384 cites W1660717591 @default.
- W2078989384 cites W1965767914 @default.
- W2078989384 cites W1967070471 @default.
- W2078989384 cites W1967999171 @default.
- W2078989384 cites W1983049116 @default.
- W2078989384 cites W1985011873 @default.
- W2078989384 cites W1988159258 @default.
- W2078989384 cites W2002027549 @default.
- W2078989384 cites W2013003209 @default.
- W2078989384 cites W2018904461 @default.
- W2078989384 cites W2024360896 @default.
- W2078989384 cites W2032222558 @default.
- W2078989384 cites W2032717564 @default.
- W2078989384 cites W2033123352 @default.
- W2078989384 cites W2038745621 @default.
- W2078989384 cites W2046344304 @default.
- W2078989384 cites W2050842087 @default.
- W2078989384 cites W2051455067 @default.
- W2078989384 cites W2055374620 @default.
- W2078989384 cites W2055891591 @default.
- W2078989384 cites W2061130175 @default.
- W2078989384 cites W2070208450 @default.
- W2078989384 cites W2070803754 @default.
- W2078989384 cites W2071675269 @default.
- W2078989384 cites W2071881521 @default.
- W2078989384 cites W2074400056 @default.
- W2078989384 cites W2092498453 @default.
- W2078989384 cites W2097795101 @default.
- W2078989384 cites W2115659029 @default.
- W2078989384 cites W2122734969 @default.
- W2078989384 cites W2129974955 @default.
- W2078989384 cites W2138366951 @default.
- W2078989384 cites W2523520751 @default.
- W2078989384 cites W3099687534 @default.
- W2078989384 cites W3100816533 @default.
- W2078989384 cites W3101017245 @default.
- W2078989384 cites W3101957230 @default.
- W2078989384 cites W4246331894 @default.
- W2078989384 doi "https://doi.org/10.1103/physrevb.64.155112" @default.
- W2078989384 hasPublicationYear "2001" @default.
- W2078989384 type Work @default.
- W2078989384 sameAs 2078989384 @default.
- W2078989384 citedByCount "39" @default.
- W2078989384 countsByYear W20789893842012 @default.
- W2078989384 countsByYear W20789893842013 @default.
- W2078989384 countsByYear W20789893842014 @default.
- W2078989384 countsByYear W20789893842015 @default.
- W2078989384 countsByYear W20789893842016 @default.
- W2078989384 countsByYear W20789893842017 @default.
- W2078989384 countsByYear W20789893842019 @default.
- W2078989384 countsByYear W20789893842021 @default.
- W2078989384 countsByYear W20789893842022 @default.
- W2078989384 crossrefType "journal-article" @default.
- W2078989384 hasAuthorship W2078989384A5029692744 @default.
- W2078989384 hasAuthorship W2078989384A5066158634 @default.
- W2078989384 hasBestOaLocation W20789893842 @default.
- W2078989384 hasConcept C106074065 @default.
- W2078989384 hasConcept C121332964 @default.
- W2078989384 hasConcept C174256460 @default.
- W2078989384 hasConcept C26873012 @default.
- W2078989384 hasConcept C2779557605 @default.
- W2078989384 hasConcept C37914503 @default.
- W2078989384 hasConcept C52233224 @default.
- W2078989384 hasConcept C54101563 @default.
- W2078989384 hasConcept C62520636 @default.
- W2078989384 hasConceptScore W2078989384C106074065 @default.
- W2078989384 hasConceptScore W2078989384C121332964 @default.
- W2078989384 hasConceptScore W2078989384C174256460 @default.
- W2078989384 hasConceptScore W2078989384C26873012 @default.
- W2078989384 hasConceptScore W2078989384C2779557605 @default.
- W2078989384 hasConceptScore W2078989384C37914503 @default.
- W2078989384 hasConceptScore W2078989384C52233224 @default.
- W2078989384 hasConceptScore W2078989384C54101563 @default.
- W2078989384 hasConceptScore W2078989384C62520636 @default.
- W2078989384 hasIssue "15" @default.
- W2078989384 hasLocation W20789893841 @default.
- W2078989384 hasLocation W20789893842 @default.
- W2078989384 hasOpenAccess W2078989384 @default.
- W2078989384 hasPrimaryLocation W20789893841 @default.
- W2078989384 hasRelatedWork W180267760 @default.
- W2078989384 hasRelatedWork W1981384329 @default.
- W2078989384 hasRelatedWork W2025145608 @default.
- W2078989384 hasRelatedWork W2030625298 @default.
- W2078989384 hasRelatedWork W2074719333 @default.
- W2078989384 hasRelatedWork W2507970982 @default.
- W2078989384 hasRelatedWork W2937225668 @default.
- W2078989384 hasRelatedWork W3103693861 @default.
- W2078989384 hasRelatedWork W3123615686 @default.
- W2078989384 hasRelatedWork W4221152466 @default.
- W2078989384 hasVolume "64" @default.