Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079005441> ?p ?o ?g. }
- W2079005441 endingPage "263" @default.
- W2079005441 startingPage "253" @default.
- W2079005441 abstract "Neural networks have proved to be a very efficient tool for time series forecasting. Furthermore, the structure of the neural model known as Multilayer Perceptron is well suited to behave as a digital filter. These two neural properties have been used to forecast the monthly electric demand. The corresponding time series has been split into two new series: one representing its trend and the other describing a fluctuation around that trend. Trend has been forecasted with a neural network, while fluctuation has been predicted by splitting its time series into six series associated to each of the six peak frequencies of the fluctuation spectrum, so that a filtering-forecasting process will be carried out by six neural networks to obtain six predictions. Then all the predictions have been added to obtain the monthly demand forecasting. It has been proved that a Multilayer Perceptron is able to perform both filtering and forecasting at once if properly trained." @default.
- W2079005441 created "2016-06-24" @default.
- W2079005441 creator A5053874716 @default.
- W2079005441 creator A5074917754 @default.
- W2079005441 creator A5085152164 @default.
- W2079005441 date "2013-07-01" @default.
- W2079005441 modified "2023-09-23" @default.
- W2079005441 title "Monthly electric demand forecasting with neural filters" @default.
- W2079005441 cites W1966579413 @default.
- W2079005441 cites W1967021899 @default.
- W2079005441 cites W1978790155 @default.
- W2079005441 cites W1984452465 @default.
- W2079005441 cites W1990900994 @default.
- W2079005441 cites W1991488986 @default.
- W2079005441 cites W2001165499 @default.
- W2079005441 cites W2001631452 @default.
- W2079005441 cites W2006846066 @default.
- W2079005441 cites W2017433650 @default.
- W2079005441 cites W2027083655 @default.
- W2079005441 cites W2033579578 @default.
- W2079005441 cites W2036183396 @default.
- W2079005441 cites W2037447475 @default.
- W2079005441 cites W2042792535 @default.
- W2079005441 cites W2047581400 @default.
- W2079005441 cites W2048267917 @default.
- W2079005441 cites W2055328789 @default.
- W2079005441 cites W2058326618 @default.
- W2079005441 cites W2059130640 @default.
- W2079005441 cites W2061152874 @default.
- W2079005441 cites W2065213709 @default.
- W2079005441 cites W2069889024 @default.
- W2079005441 cites W2071151783 @default.
- W2079005441 cites W2071209415 @default.
- W2079005441 cites W2075795701 @default.
- W2079005441 cites W2091967219 @default.
- W2079005441 cites W2105916576 @default.
- W2079005441 cites W2115072676 @default.
- W2079005441 cites W2121367231 @default.
- W2079005441 cites W2130491563 @default.
- W2079005441 cites W2135042267 @default.
- W2079005441 cites W2136217720 @default.
- W2079005441 cites W2137983211 @default.
- W2079005441 cites W2150783679 @default.
- W2079005441 cites W2164083776 @default.
- W2079005441 doi "https://doi.org/10.1016/j.ijepes.2013.01.019" @default.
- W2079005441 hasPublicationYear "2013" @default.
- W2079005441 type Work @default.
- W2079005441 sameAs 2079005441 @default.
- W2079005441 citedByCount "33" @default.
- W2079005441 countsByYear W20790054412014 @default.
- W2079005441 countsByYear W20790054412015 @default.
- W2079005441 countsByYear W20790054412016 @default.
- W2079005441 countsByYear W20790054412017 @default.
- W2079005441 countsByYear W20790054412018 @default.
- W2079005441 countsByYear W20790054412019 @default.
- W2079005441 countsByYear W20790054412020 @default.
- W2079005441 countsByYear W20790054412021 @default.
- W2079005441 countsByYear W20790054412022 @default.
- W2079005441 crossrefType "journal-article" @default.
- W2079005441 hasAuthorship W2079005441A5053874716 @default.
- W2079005441 hasAuthorship W2079005441A5074917754 @default.
- W2079005441 hasAuthorship W2079005441A5085152164 @default.
- W2079005441 hasConcept C106131492 @default.
- W2079005441 hasConcept C111919701 @default.
- W2079005441 hasConcept C119857082 @default.
- W2079005441 hasConcept C143724316 @default.
- W2079005441 hasConcept C151406439 @default.
- W2079005441 hasConcept C151730666 @default.
- W2079005441 hasConcept C154945302 @default.
- W2079005441 hasConcept C175706884 @default.
- W2079005441 hasConcept C179717631 @default.
- W2079005441 hasConcept C193809577 @default.
- W2079005441 hasConcept C31972630 @default.
- W2079005441 hasConcept C33923547 @default.
- W2079005441 hasConcept C41008148 @default.
- W2079005441 hasConcept C42475967 @default.
- W2079005441 hasConcept C50644808 @default.
- W2079005441 hasConcept C60908668 @default.
- W2079005441 hasConcept C86803240 @default.
- W2079005441 hasConcept C98045186 @default.
- W2079005441 hasConceptScore W2079005441C106131492 @default.
- W2079005441 hasConceptScore W2079005441C111919701 @default.
- W2079005441 hasConceptScore W2079005441C119857082 @default.
- W2079005441 hasConceptScore W2079005441C143724316 @default.
- W2079005441 hasConceptScore W2079005441C151406439 @default.
- W2079005441 hasConceptScore W2079005441C151730666 @default.
- W2079005441 hasConceptScore W2079005441C154945302 @default.
- W2079005441 hasConceptScore W2079005441C175706884 @default.
- W2079005441 hasConceptScore W2079005441C179717631 @default.
- W2079005441 hasConceptScore W2079005441C193809577 @default.
- W2079005441 hasConceptScore W2079005441C31972630 @default.
- W2079005441 hasConceptScore W2079005441C33923547 @default.
- W2079005441 hasConceptScore W2079005441C41008148 @default.
- W2079005441 hasConceptScore W2079005441C42475967 @default.
- W2079005441 hasConceptScore W2079005441C50644808 @default.
- W2079005441 hasConceptScore W2079005441C60908668 @default.
- W2079005441 hasConceptScore W2079005441C86803240 @default.
- W2079005441 hasConceptScore W2079005441C98045186 @default.