Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079040300> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2079040300 abstract "In this paper, we consider the problem of building models that have high subjectivity classification accuracy across domains. For that purpose, we present and evaluate new methods based on multi-view learning using both high-level (i.e. linguistic features for subjectivity detection) and low-level features (i.e. unigrams and bigrams). In particular, we show that multi-view learning, combining high-level and low-level features with adapted classifiers, can lead to improved results compared to one of the state-of-the-art algorithms called Stochastic Agreement Regularization. In particular, the experiments show that dividing the set of characteristics into three views returns the best results overall with accuracy across domains of 91.3% for the Class-Guided Multi-View Learning Algorithm, which combines both Linear Discriminant Analysis and Support Vector Machines." @default.
- W2079040300 created "2016-06-24" @default.
- W2079040300 creator A5022093054 @default.
- W2079040300 creator A5043440123 @default.
- W2079040300 date "2012-08-12" @default.
- W2079040300 modified "2023-09-27" @default.
- W2079040300 title "Transverse subjectivity classification" @default.
- W2079040300 cites W1998442272 @default.
- W2079040300 cites W2006386362 @default.
- W2079040300 cites W2022204871 @default.
- W2079040300 cites W2048679005 @default.
- W2079040300 cites W2102381086 @default.
- W2079040300 cites W2114524997 @default.
- W2079040300 cites W2149197198 @default.
- W2079040300 cites W2153353890 @default.
- W2079040300 cites W2166706824 @default.
- W2079040300 cites W2199803028 @default.
- W2079040300 cites W2491607649 @default.
- W2079040300 cites W4236192045 @default.
- W2079040300 doi "https://doi.org/10.1145/2346676.2346679" @default.
- W2079040300 hasPublicationYear "2012" @default.
- W2079040300 type Work @default.
- W2079040300 sameAs 2079040300 @default.
- W2079040300 citedByCount "0" @default.
- W2079040300 crossrefType "proceedings-article" @default.
- W2079040300 hasAuthorship W2079040300A5022093054 @default.
- W2079040300 hasAuthorship W2079040300A5043440123 @default.
- W2079040300 hasBestOaLocation W20790403004 @default.
- W2079040300 hasConcept C111472728 @default.
- W2079040300 hasConcept C138885662 @default.
- W2079040300 hasConcept C154945302 @default.
- W2079040300 hasConcept C202889954 @default.
- W2079040300 hasConcept C204321447 @default.
- W2079040300 hasConcept C41008148 @default.
- W2079040300 hasConceptScore W2079040300C111472728 @default.
- W2079040300 hasConceptScore W2079040300C138885662 @default.
- W2079040300 hasConceptScore W2079040300C154945302 @default.
- W2079040300 hasConceptScore W2079040300C202889954 @default.
- W2079040300 hasConceptScore W2079040300C204321447 @default.
- W2079040300 hasConceptScore W2079040300C41008148 @default.
- W2079040300 hasLocation W20790403001 @default.
- W2079040300 hasLocation W20790403002 @default.
- W2079040300 hasLocation W20790403003 @default.
- W2079040300 hasLocation W20790403004 @default.
- W2079040300 hasOpenAccess W2079040300 @default.
- W2079040300 hasPrimaryLocation W20790403001 @default.
- W2079040300 hasRelatedWork W1512718085 @default.
- W2079040300 hasRelatedWork W1569841287 @default.
- W2079040300 hasRelatedWork W2293457016 @default.
- W2079040300 hasRelatedWork W2351428524 @default.
- W2079040300 hasRelatedWork W2359001871 @default.
- W2079040300 hasRelatedWork W2369308426 @default.
- W2079040300 hasRelatedWork W2789919619 @default.
- W2079040300 hasRelatedWork W3169305685 @default.
- W2079040300 hasRelatedWork W1551406738 @default.
- W2079040300 hasRelatedWork W2610387714 @default.
- W2079040300 isParatext "false" @default.
- W2079040300 isRetracted "false" @default.
- W2079040300 magId "2079040300" @default.
- W2079040300 workType "article" @default.