Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079043165> ?p ?o ?g. }
- W2079043165 endingPage "2181" @default.
- W2079043165 startingPage "2170" @default.
- W2079043165 abstract "This paper reports on patterns in plant-mediated processes that determine the rate of nutrient cycling in temperate fens and bogs. We linked leaf-level nutrient dynamics with leaf-litter decomposition and explored how the observed patterns were reflected in nutrient cycling at the ecosystem level. Comparisons were made among growth forms (evergreen and deciduous shrubs and trees, graminoids and Sphagnum mosses) and between mire types (fens and bogs). A literature review showed that the predominant growth form was more important as a determinant of leaf-level nutrient-use efficiency (NUE) than mire type (fen vs. bog). Evergreens had the highest N and P use efficiency. The growth form differences in NUE were mainly determined by differences in N and P concentrations in mature leaves and not by differences in resorption efficiency from senescing leaves. Sphagnum leaves had lower N and P concentrations than the other growth forms, but because of a lack of data on nutrient resorption efficiency the NUE of these mosses could not be calculated. Nitrogen use efficiency did not differ among fen and bog species, whereas bog species had a higher P use efficiency than fen species. However, a complete evaluation of mire-type or growth-form effects on NUE is only possible when data become available about nutrient resorption from senescing Sphagnum leaves. As leaf-level NUE is negatively correlated with leaf-litter nutrient concentrations, there is a direct link between NUE and litter decomposition rate. Rates of litter decomposition of Sphagnum mosses are lower than in the other growth forms, but there is still much speculation about possible reasons. The role of litter chemistry of Sphagnum mosses (including decay inhibitors and decay-resistant compounds) in decomposition especially warrants further study. The strongly deviating nutritional ecology of Sphagnum mosses clearly distinguishes fens and bogs from other ecosystems. Moreover, N and P concentrations in mature leaves from vascular plant species from fens and bogs are in almost all cases lower and leaf-level N use efficiency is higher than in species from other ecosystems, irrespective of the growth form considered. Both literature data and data from a comparative study on soil nutrient cycling in temperate fens and bogs in the United States (Maryland), The Netherlands, and Poland showed that nutrient mineralization did not differ clearly between fens and bogs. The comparative study further showed that cellulose decomposition in bogs was lower than in fens and that nutrient mineralization was higher in forested than in herbaceous mires. The occurrence of dominant growth forms was clearly related to soil nutrient-cycling processes, and observed patterns were in agreement with patterns in the components of NUE as found in the literature study. We conclude that a protocol with standardized procedures for measuring various nutrient-cycling process rates that is used by scientists in various wetland types and geographical regions is a useful tool for unravelling large-scale patterns in soil nutrient-cycling processes in wetlands and for linking plant-mediated nutrient dynamics with ecosystem nutrient-cycling processes." @default.
- W2079043165 created "2016-06-24" @default.
- W2079043165 creator A5004964369 @default.
- W2079043165 creator A5055119533 @default.
- W2079043165 creator A5059282539 @default.
- W2079043165 date "1999-10-01" @default.
- W2079043165 modified "2023-10-13" @default.
- W2079043165 title "PLANT-MEDIATED CONTROLS ON NUTRIENT CYCLING IN TEMPERATE FENS AND BOGS" @default.
- W2079043165 cites W1968516757 @default.
- W2079043165 cites W1969014333 @default.
- W2079043165 cites W1970964652 @default.
- W2079043165 cites W1971056015 @default.
- W2079043165 cites W1975329690 @default.
- W2079043165 cites W1975983991 @default.
- W2079043165 cites W1979320105 @default.
- W2079043165 cites W1985451582 @default.
- W2079043165 cites W1989949238 @default.
- W2079043165 cites W1996498909 @default.
- W2079043165 cites W1999326850 @default.
- W2079043165 cites W2004502161 @default.
- W2079043165 cites W2005615174 @default.
- W2079043165 cites W2006581320 @default.
- W2079043165 cites W2009121425 @default.
- W2079043165 cites W2009614082 @default.
- W2079043165 cites W2014641687 @default.
- W2079043165 cites W2016072111 @default.
- W2079043165 cites W2017694858 @default.
- W2079043165 cites W2020131171 @default.
- W2079043165 cites W2022790455 @default.
- W2079043165 cites W2023906603 @default.
- W2079043165 cites W2024363542 @default.
- W2079043165 cites W2025133204 @default.
- W2079043165 cites W2027959868 @default.
- W2079043165 cites W2034611191 @default.
- W2079043165 cites W2035850881 @default.
- W2079043165 cites W2036668314 @default.
- W2079043165 cites W2042796740 @default.
- W2079043165 cites W2044066282 @default.
- W2079043165 cites W2044983615 @default.
- W2079043165 cites W2046844233 @default.
- W2079043165 cites W2052343464 @default.
- W2079043165 cites W2053610595 @default.
- W2079043165 cites W2055662873 @default.
- W2079043165 cites W2055782022 @default.
- W2079043165 cites W2056209258 @default.
- W2079043165 cites W2064672358 @default.
- W2079043165 cites W2071201308 @default.
- W2079043165 cites W2074596894 @default.
- W2079043165 cites W2079180972 @default.
- W2079043165 cites W2080703517 @default.
- W2079043165 cites W2081559284 @default.
- W2079043165 cites W2086794124 @default.
- W2079043165 cites W2089049615 @default.
- W2079043165 cites W2091663111 @default.
- W2079043165 cites W2093846586 @default.
- W2079043165 cites W2107398554 @default.
- W2079043165 cites W2108178382 @default.
- W2079043165 cites W2108273927 @default.
- W2079043165 cites W2112993182 @default.
- W2079043165 cites W2115846264 @default.
- W2079043165 cites W2120377132 @default.
- W2079043165 cites W2120388141 @default.
- W2079043165 cites W2137270765 @default.
- W2079043165 cites W2147496270 @default.
- W2079043165 cites W2148719511 @default.
- W2079043165 cites W2156490810 @default.
- W2079043165 cites W2161869707 @default.
- W2079043165 cites W2313563420 @default.
- W2079043165 cites W2314073819 @default.
- W2079043165 cites W2315569640 @default.
- W2079043165 cites W2316337688 @default.
- W2079043165 cites W2316608752 @default.
- W2079043165 cites W2317110372 @default.
- W2079043165 cites W2326716599 @default.
- W2079043165 cites W2328901806 @default.
- W2079043165 cites W2331088909 @default.
- W2079043165 cites W2331113124 @default.
- W2079043165 cites W2334536371 @default.
- W2079043165 cites W2334837576 @default.
- W2079043165 cites W2334902041 @default.
- W2079043165 cites W2335075910 @default.
- W2079043165 cites W2464409167 @default.
- W2079043165 cites W2593607201 @default.
- W2079043165 doi "https://doi.org/10.1890/0012-9658(1999)080[2170:pmconc]2.0.co;2" @default.
- W2079043165 hasPublicationYear "1999" @default.
- W2079043165 type Work @default.
- W2079043165 sameAs 2079043165 @default.
- W2079043165 citedByCount "301" @default.
- W2079043165 countsByYear W20790431652012 @default.
- W2079043165 countsByYear W20790431652013 @default.
- W2079043165 countsByYear W20790431652014 @default.
- W2079043165 countsByYear W20790431652015 @default.
- W2079043165 countsByYear W20790431652016 @default.
- W2079043165 countsByYear W20790431652017 @default.
- W2079043165 countsByYear W20790431652018 @default.
- W2079043165 countsByYear W20790431652019 @default.
- W2079043165 countsByYear W20790431652020 @default.
- W2079043165 countsByYear W20790431652021 @default.