Matches in SemOpenAlex for { <https://semopenalex.org/work/W207905448> ?p ?o ?g. }
- W207905448 abstract "The major goal of this dissertation is to present a new clustering algorithm using information theoretic measures and apply the algorithm to segment Magnetic Resonance (MR) Images. Since MR images are highly variable from subject to subject, data driven segmentation methods seem appropriate. We developed a new clustering evaluation function based on information theory that outperforms previous clustering algorithms, and the new cost function works as a valley seeking algorithm. Since optimization of the clustering evaluation function is difficult because of its stepwise nature and existence of local minima, we developed an improvement on the K-change algorithm used commonly in clustering problems. When applied to nonlinearly separable data, the algorithm performed with very good results, and was able to find the nonlinear boundaries between clusters without supervision. The clustering algorithm is applied to segment brain MR images with successful results. A feature set is created from MR images using entropy measures of small blocks from the input image. Clustering the whole brain image is computationally intensive. Therefore, a small section of the brain is first used to train the clustering algorithm. Afterwards, the rest of the brain is clustered using the results obtained from the training image by using the distance measure proposed. The algorithm is easy to apply and the calculations are simplified by choosing a proper distance measure which does not require numerical integration." @default.
- W207905448 created "2016-06-24" @default.
- W207905448 creator A5019504861 @default.
- W207905448 creator A5061762260 @default.
- W207905448 date "2000-01-01" @default.
- W207905448 modified "2023-09-24" @default.
- W207905448 title "A new clustering algorithm for segmentation of magnetic resonance images" @default.
- W207905448 cites W134309601 @default.
- W207905448 cites W1495623034 @default.
- W207905448 cites W1496462336 @default.
- W207905448 cites W1497576442 @default.
- W207905448 cites W1519243944 @default.
- W207905448 cites W1541274513 @default.
- W207905448 cites W1554663460 @default.
- W207905448 cites W1624804034 @default.
- W207905448 cites W1634005169 @default.
- W207905448 cites W1665163134 @default.
- W207905448 cites W1679913846 @default.
- W207905448 cites W189876754 @default.
- W207905448 cites W1930824198 @default.
- W207905448 cites W1960150933 @default.
- W207905448 cites W1966992150 @default.
- W207905448 cites W1967011375 @default.
- W207905448 cites W1970711281 @default.
- W207905448 cites W1970800786 @default.
- W207905448 cites W1972544340 @default.
- W207905448 cites W1977867644 @default.
- W207905448 cites W1978679656 @default.
- W207905448 cites W1983945575 @default.
- W207905448 cites W1984979148 @default.
- W207905448 cites W1991770581 @default.
- W207905448 cites W1992402718 @default.
- W207905448 cites W2000438376 @default.
- W207905448 cites W2003370853 @default.
- W207905448 cites W2003641048 @default.
- W207905448 cites W2006327398 @default.
- W207905448 cites W2011723901 @default.
- W207905448 cites W2015513598 @default.
- W207905448 cites W2015857587 @default.
- W207905448 cites W2020717731 @default.
- W207905448 cites W2022495783 @default.
- W207905448 cites W2023963201 @default.
- W207905448 cites W2024060531 @default.
- W207905448 cites W2026295629 @default.
- W207905448 cites W2030812936 @default.
- W207905448 cites W2032558547 @default.
- W207905448 cites W2035736092 @default.
- W207905448 cites W2036488048 @default.
- W207905448 cites W2040336387 @default.
- W207905448 cites W2042587503 @default.
- W207905448 cites W2044420453 @default.
- W207905448 cites W2045908891 @default.
- W207905448 cites W2045986827 @default.
- W207905448 cites W2047984214 @default.
- W207905448 cites W2049633694 @default.
- W207905448 cites W2049686996 @default.
- W207905448 cites W2050583479 @default.
- W207905448 cites W2050731694 @default.
- W207905448 cites W2054835035 @default.
- W207905448 cites W2056352387 @default.
- W207905448 cites W2060129323 @default.
- W207905448 cites W2062432646 @default.
- W207905448 cites W2063091905 @default.
- W207905448 cites W2064517121 @default.
- W207905448 cites W2078602583 @default.
- W207905448 cites W2079222338 @default.
- W207905448 cites W2085220093 @default.
- W207905448 cites W2086279301 @default.
- W207905448 cites W2086921140 @default.
- W207905448 cites W2086929181 @default.
- W207905448 cites W2090120013 @default.
- W207905448 cites W2093930746 @default.
- W207905448 cites W2099111195 @default.
- W207905448 cites W2100115174 @default.
- W207905448 cites W2100699815 @default.
- W207905448 cites W2101897555 @default.
- W207905448 cites W2101927907 @default.
- W207905448 cites W2104024054 @default.
- W207905448 cites W2104095591 @default.
- W207905448 cites W2107165478 @default.
- W207905448 cites W2108543930 @default.
- W207905448 cites W2116151911 @default.
- W207905448 cites W2117695123 @default.
- W207905448 cites W2117853077 @default.
- W207905448 cites W2118020555 @default.
- W207905448 cites W2122882636 @default.
- W207905448 cites W2122925692 @default.
- W207905448 cites W2123838014 @default.
- W207905448 cites W2124325370 @default.
- W207905448 cites W2124503759 @default.
- W207905448 cites W2130520030 @default.
- W207905448 cites W2131036905 @default.
- W207905448 cites W2131329059 @default.
- W207905448 cites W2131394714 @default.
- W207905448 cites W2132499268 @default.
- W207905448 cites W2134383396 @default.
- W207905448 cites W2135346934 @default.
- W207905448 cites W2136043787 @default.
- W207905448 cites W2140860956 @default.
- W207905448 cites W2144219012 @default.