Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079055380> ?p ?o ?g. }
- W2079055380 endingPage "655" @default.
- W2079055380 startingPage "635" @default.
- W2079055380 abstract "In this feature article, we discuss the key aspects of solid-state dye-sensitized solar cells (SDSC) and propose different concepts based on extensive studies carried out in our group to improve their performance. The influence of compact TiO2 layer, novel donor-antenna sensitizing dyes, nature of nanocrystalline-TiO2 layers and solid-state organic hole conductors on the performance of SDSC is discussed in this article. Both preparation and thickness of the compact TiO2 layer were optimized using spray pyrolysis. The studies revealed that an optimum film thickness of 120–150 nm of compact TiO2 yielded the best rectifying behavior and SDSC performance. The influence of three different mesoporous titania films, obtained from three different titania nanocrystals, prepared by sol–gel, thermal, and colloidal-microwave process, was also studied and discussed here. The TiO2 layer with the optimum pore volume and pore diameter (∼44 nm) displayed the highest efficiency and IPCE in SDSC. The importance of pore size rather than high surface area for filling the mesoporous layer with solid-state hole conductor became evident from this study. A series of heteroleptic Ru(II) complexes carrying donor antenna moieties, namely, triphenylamine (TPA) or N,N′-bis(phenyl)-N,N′-bis(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine (TPD), were synthesized and applied in SDSC. These novel donor-antenna dyes revealed spectacular performances of power conversion efficiencies in the range 1.5–3.4%, as measured under AM 1.5 spectral conditions. This was attributed to highly efficient light harvesting of these novel dyes and the improved charge-transfer dynamics at TiO2-dye and dye-hole conductor interfaces. Different low molecular weight and polymeric triphenyldiamines were synthesized and utilized as hole-transporting layers (HTL) in SDSC. Different studies showed that low molecular TPDs displayed better efficiency than polymeric counterparts due to their improved filling into the pores of nc-TiO2 layer. Another interesting study revealed that an optimum driving force in terms of HOMO-level difference between the dye and HTL decides charge carrier generation efficiency. Recently, novel hole conductors with spiro-bifluorene-triphenylamine core for transporting holes and tetraethylene glycol side chains for binding lithium ions were synthesized and applied in SDSC. This work clearly emphasizes that Li+-salt is required at the TiO2/dye interface as well as in the bulk of HTL. It was also found that the addition of about 5–20% of these Li+-binding hole conductors and higher Li-salt (N-lithiotrifluoromethane sulfonamide) concentrations improved the SDSC performance. An improvement of about 120% in the solar cell efficiency as compared to the reference cells was achieved with an optimum composition of Li+-binding hole conductor and Li-salt." @default.
- W2079055380 created "2016-06-24" @default.
- W2079055380 creator A5031105323 @default.
- W2079055380 creator A5074405278 @default.
- W2079055380 date "2008-02-01" @default.
- W2079055380 modified "2023-10-03" @default.
- W2079055380 title "Key aspects of individual layers in solid-state dye-sensitized solar cells and novel concepts to improve their performance" @default.
- W2079055380 cites W1534509350 @default.
- W2079055380 cites W1896289247 @default.
- W2079055380 cites W1966823770 @default.
- W2079055380 cites W1967170623 @default.
- W2079055380 cites W1968937865 @default.
- W2079055380 cites W1976287969 @default.
- W2079055380 cites W1978602270 @default.
- W2079055380 cites W1981145900 @default.
- W2079055380 cites W1981179416 @default.
- W2079055380 cites W1984909213 @default.
- W2079055380 cites W1987195590 @default.
- W2079055380 cites W1989068857 @default.
- W2079055380 cites W1990786082 @default.
- W2079055380 cites W1990870631 @default.
- W2079055380 cites W1992499196 @default.
- W2079055380 cites W1994888565 @default.
- W2079055380 cites W1996278429 @default.
- W2079055380 cites W1996375884 @default.
- W2079055380 cites W1996631093 @default.
- W2079055380 cites W1998370423 @default.
- W2079055380 cites W2000114161 @default.
- W2079055380 cites W2001239526 @default.
- W2079055380 cites W2008994951 @default.
- W2079055380 cites W2010120233 @default.
- W2079055380 cites W2010145484 @default.
- W2079055380 cites W2010154488 @default.
- W2079055380 cites W2016497388 @default.
- W2079055380 cites W2022135717 @default.
- W2079055380 cites W2025744332 @default.
- W2079055380 cites W2025947583 @default.
- W2079055380 cites W2026832211 @default.
- W2079055380 cites W2037097832 @default.
- W2079055380 cites W2037596713 @default.
- W2079055380 cites W2038454447 @default.
- W2079055380 cites W2039379027 @default.
- W2079055380 cites W2043349432 @default.
- W2079055380 cites W2044583102 @default.
- W2079055380 cites W2048093472 @default.
- W2079055380 cites W2052428005 @default.
- W2079055380 cites W2058442791 @default.
- W2079055380 cites W2058695298 @default.
- W2079055380 cites W2063101799 @default.
- W2079055380 cites W2063822774 @default.
- W2079055380 cites W2065273858 @default.
- W2079055380 cites W2067880539 @default.
- W2079055380 cites W2068583005 @default.
- W2079055380 cites W2071960649 @default.
- W2079055380 cites W2077188122 @default.
- W2079055380 cites W2082747664 @default.
- W2079055380 cites W2084921447 @default.
- W2079055380 cites W2087853472 @default.
- W2079055380 cites W2090132235 @default.
- W2079055380 cites W2103379810 @default.
- W2079055380 cites W2110438191 @default.
- W2079055380 cites W2111090251 @default.
- W2079055380 cites W2111781747 @default.
- W2079055380 cites W2121304740 @default.
- W2079055380 cites W2132103095 @default.
- W2079055380 cites W2143087047 @default.
- W2079055380 cites W2146047707 @default.
- W2079055380 cites W2153073075 @default.
- W2079055380 cites W2168841573 @default.
- W2079055380 cites W2171252184 @default.
- W2079055380 cites W4213245659 @default.
- W2079055380 cites W4241456496 @default.
- W2079055380 doi "https://doi.org/10.1016/j.ica.2007.04.033" @default.
- W2079055380 hasPublicationYear "2008" @default.
- W2079055380 type Work @default.
- W2079055380 sameAs 2079055380 @default.
- W2079055380 citedByCount "68" @default.
- W2079055380 countsByYear W20790553802012 @default.
- W2079055380 countsByYear W20790553802013 @default.
- W2079055380 countsByYear W20790553802014 @default.
- W2079055380 countsByYear W20790553802015 @default.
- W2079055380 countsByYear W20790553802016 @default.
- W2079055380 countsByYear W20790553802017 @default.
- W2079055380 countsByYear W20790553802018 @default.
- W2079055380 countsByYear W20790553802019 @default.
- W2079055380 countsByYear W20790553802020 @default.
- W2079055380 crossrefType "journal-article" @default.
- W2079055380 hasAuthorship W2079055380A5031105323 @default.
- W2079055380 hasAuthorship W2079055380A5074405278 @default.
- W2079055380 hasConcept C107814960 @default.
- W2079055380 hasConcept C127413603 @default.
- W2079055380 hasConcept C140676511 @default.
- W2079055380 hasConcept C147789679 @default.
- W2079055380 hasConcept C161790260 @default.
- W2079055380 hasConcept C171250308 @default.
- W2079055380 hasConcept C17525397 @default.
- W2079055380 hasConcept C178790620 @default.
- W2079055380 hasConcept C185592680 @default.