Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079102747> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2079102747 endingPage "1544" @default.
- W2079102747 startingPage "1531" @default.
- W2079102747 abstract "Creating accurate data models describing the dynamics of physical phenomena in time and space is important in optimized control and decision making. Models highlight various trends and patterns. However, producing accurate models is challenging as different errors are introduced by sampling platforms with limited resources, e.g., insufficient sampling rates, data loss due to buffer overwriting, reduced communication bandwidth, and long communication delays. Furthermore, the dynamics of the environment, like mobile energy sources and sinks, might further increase errors as resources must be shared between the sampling and communication activities. This paper presents a procedure to systematically construct robust data models using samples acquired through a grid network of embedded sensing devices with limited resources, like bandwidth and buffer memory. Models are in the form of ordinary differential equations. The procedure constructs local data models by lumping state variables. Local models are then collected centrally to produce global models. The proposed modeling scheme uses a linear programming formulation to compute the lumping level at each node, and the parameters of the networked sensing platform, i.e., best data communication paths and bandwidths. Two algorithms are described to predict the trajectories of mobile energy sources/sinks as predictions can further reduce data loss and delays during communication. The computed parameters and trajectory predictions are used to configure the local decision making routines of the networked sampling nodes. Even though the procedure can be used to model a broader set of phenomena, experiments discuss the effectiveness of the method for thermal modeling of ULTRASPARC Niagara T1 architecture. Experiments show that the presented method reduces the overall error between 58.29% and 76.91% with an average of 68.87%, and communication delay between -11.49% and 57.62% with an average of 21.85%." @default.
- W2079102747 created "2016-06-24" @default.
- W2079102747 creator A5018969756 @default.
- W2079102747 creator A5037258649 @default.
- W2079102747 creator A5080972445 @default.
- W2079102747 date "2014-10-01" @default.
- W2079102747 modified "2023-09-25" @default.
- W2079102747 title "Linear Programming-Based Optimization for Robust Data Modeling in a Distributed Sensing Platform" @default.
- W2079102747 cites W1538951169 @default.
- W2079102747 cites W1979769287 @default.
- W2079102747 cites W1998752433 @default.
- W2079102747 cites W2001120444 @default.
- W2079102747 cites W2001965201 @default.
- W2079102747 cites W2022740893 @default.
- W2079102747 cites W2039370337 @default.
- W2079102747 cites W2040309011 @default.
- W2079102747 cites W2044898315 @default.
- W2079102747 cites W2060599630 @default.
- W2079102747 cites W2091936226 @default.
- W2079102747 cites W2102627844 @default.
- W2079102747 cites W2105437704 @default.
- W2079102747 cites W2107876485 @default.
- W2079102747 cites W2116504089 @default.
- W2079102747 cites W2121162457 @default.
- W2079102747 cites W2130616717 @default.
- W2079102747 cites W2132203084 @default.
- W2079102747 cites W2135594061 @default.
- W2079102747 cites W2139599315 @default.
- W2079102747 cites W2152165066 @default.
- W2079102747 cites W2155725253 @default.
- W2079102747 cites W2162404471 @default.
- W2079102747 cites W2165004589 @default.
- W2079102747 cites W2170968537 @default.
- W2079102747 cites W2937891603 @default.
- W2079102747 cites W3142845206 @default.
- W2079102747 cites W3149104842 @default.
- W2079102747 doi "https://doi.org/10.1109/tcad.2014.2334295" @default.
- W2079102747 hasPublicationYear "2014" @default.
- W2079102747 type Work @default.
- W2079102747 sameAs 2079102747 @default.
- W2079102747 citedByCount "1" @default.
- W2079102747 countsByYear W20791027472018 @default.
- W2079102747 crossrefType "journal-article" @default.
- W2079102747 hasAuthorship W2079102747A5018969756 @default.
- W2079102747 hasAuthorship W2079102747A5037258649 @default.
- W2079102747 hasAuthorship W2079102747A5080972445 @default.
- W2079102747 hasConcept C120314980 @default.
- W2079102747 hasConcept C127413603 @default.
- W2079102747 hasConcept C140779682 @default.
- W2079102747 hasConcept C187691185 @default.
- W2079102747 hasConcept C2524010 @default.
- W2079102747 hasConcept C2776257435 @default.
- W2079102747 hasConcept C31258907 @default.
- W2079102747 hasConcept C33923547 @default.
- W2079102747 hasConcept C41008148 @default.
- W2079102747 hasConcept C62611344 @default.
- W2079102747 hasConcept C66938386 @default.
- W2079102747 hasConcept C76155785 @default.
- W2079102747 hasConcept C79403827 @default.
- W2079102747 hasConcept C94915269 @default.
- W2079102747 hasConceptScore W2079102747C120314980 @default.
- W2079102747 hasConceptScore W2079102747C127413603 @default.
- W2079102747 hasConceptScore W2079102747C140779682 @default.
- W2079102747 hasConceptScore W2079102747C187691185 @default.
- W2079102747 hasConceptScore W2079102747C2524010 @default.
- W2079102747 hasConceptScore W2079102747C2776257435 @default.
- W2079102747 hasConceptScore W2079102747C31258907 @default.
- W2079102747 hasConceptScore W2079102747C33923547 @default.
- W2079102747 hasConceptScore W2079102747C41008148 @default.
- W2079102747 hasConceptScore W2079102747C62611344 @default.
- W2079102747 hasConceptScore W2079102747C66938386 @default.
- W2079102747 hasConceptScore W2079102747C76155785 @default.
- W2079102747 hasConceptScore W2079102747C79403827 @default.
- W2079102747 hasConceptScore W2079102747C94915269 @default.
- W2079102747 hasIssue "10" @default.
- W2079102747 hasLocation W20791027471 @default.
- W2079102747 hasOpenAccess W2079102747 @default.
- W2079102747 hasPrimaryLocation W20791027471 @default.
- W2079102747 hasRelatedWork W1485627940 @default.
- W2079102747 hasRelatedWork W1498845059 @default.
- W2079102747 hasRelatedWork W1596201972 @default.
- W2079102747 hasRelatedWork W1647989977 @default.
- W2079102747 hasRelatedWork W2126451717 @default.
- W2079102747 hasRelatedWork W2160425906 @default.
- W2079102747 hasRelatedWork W2367503426 @default.
- W2079102747 hasRelatedWork W2380963126 @default.
- W2079102747 hasRelatedWork W2466597139 @default.
- W2079102747 hasRelatedWork W2805391225 @default.
- W2079102747 hasVolume "33" @default.
- W2079102747 isParatext "false" @default.
- W2079102747 isRetracted "false" @default.
- W2079102747 magId "2079102747" @default.
- W2079102747 workType "article" @default.