Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079139757> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W2079139757 abstract "Recommendation System has been developed with the growth of Word Wide Web. Recently, Web3.0 or Semantic Web has changed the traditional way of its related approaches, by leveraging knowledge of Linked Open data Cloud which consist of domain specific and cross domain interconnected datasets. It fabricates thousands of RDF triples and millions of links (external/internal) to connect this open source data. As per our literature survey we have found that the Recommender System based on Linked Open data Cloud does not deal with this Knowledge Base in an efficient manner because of the problem of data sparsity and inconsistency, which results due to automatic generation of Resource Description Format data from unstructured documents that leads to garbage data have no sense in recommending. This paper aims to explore a hybrid recommender which can be used as a rating predictor as well as movie recommender of RDF datasets. Also, we present a new model for Recommender System that not only utilizes DBpedia Knowledge Base but also remove the former problems in Recommender System by using a preprocessing technique for sparsity removal. To prove the correctness and accuracy of our model we have implemented and tested it over other previous methodologies. In order to make our algorithm efficient, we also used different data structure for storing and processing." @default.
- W2079139757 created "2016-06-24" @default.
- W2079139757 creator A5004099006 @default.
- W2079139757 creator A5068764528 @default.
- W2079139757 date "2014-10-09" @default.
- W2079139757 modified "2023-10-03" @default.
- W2079139757 title "SemMovieRec" @default.
- W2079139757 cites W130080441 @default.
- W2079139757 cites W1483439930 @default.
- W2079139757 cites W18830438 @default.
- W2079139757 cites W1978400840 @default.
- W2079139757 cites W2015191210 @default.
- W2079139757 cites W2025605741 @default.
- W2079139757 cites W2032464724 @default.
- W2079139757 cites W2039030979 @default.
- W2079139757 cites W2058990114 @default.
- W2079139757 cites W2113273124 @default.
- W2079139757 cites W2153225416 @default.
- W2079139757 cites W2159094788 @default.
- W2079139757 cites W2171960770 @default.
- W2079139757 doi "https://doi.org/10.1145/2675744.2675759" @default.
- W2079139757 hasPublicationYear "2014" @default.
- W2079139757 type Work @default.
- W2079139757 sameAs 2079139757 @default.
- W2079139757 citedByCount "11" @default.
- W2079139757 countsByYear W20791397572015 @default.
- W2079139757 countsByYear W20791397572016 @default.
- W2079139757 countsByYear W20791397572017 @default.
- W2079139757 countsByYear W20791397572018 @default.
- W2079139757 countsByYear W20791397572019 @default.
- W2079139757 countsByYear W20791397572021 @default.
- W2079139757 crossrefType "proceedings-article" @default.
- W2079139757 hasAuthorship W2079139757A5004099006 @default.
- W2079139757 hasAuthorship W2079139757A5068764528 @default.
- W2079139757 hasConcept C41008148 @default.
- W2079139757 hasConceptScore W2079139757C41008148 @default.
- W2079139757 hasLocation W20791397571 @default.
- W2079139757 hasOpenAccess W2079139757 @default.
- W2079139757 hasPrimaryLocation W20791397571 @default.
- W2079139757 hasRelatedWork W2093578348 @default.
- W2079139757 hasRelatedWork W2350741829 @default.
- W2079139757 hasRelatedWork W2358668433 @default.
- W2079139757 hasRelatedWork W2376932109 @default.
- W2079139757 hasRelatedWork W2382290278 @default.
- W2079139757 hasRelatedWork W2390279801 @default.
- W2079139757 hasRelatedWork W2748952813 @default.
- W2079139757 hasRelatedWork W2766271392 @default.
- W2079139757 hasRelatedWork W2899084033 @default.
- W2079139757 hasRelatedWork W3004735627 @default.
- W2079139757 isParatext "false" @default.
- W2079139757 isRetracted "false" @default.
- W2079139757 magId "2079139757" @default.
- W2079139757 workType "article" @default.